

IDEAS FOR MICROSOFT PLAYREADY SECURITY

IMPROVEMENTS

Last update: 30-01-2023

DISCLAIMER

INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, AND TO THE MAXIMUM EXTENT
PERMITTED BY APPLICABLE LAW NEITHER ADAM GOWDIAK SECURITY REASEARCH, ITS

LICENSORS OR AFFILIATES, NOR THE COPYRIGHT HOLDERS MAKE ANY
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE OR THAT THE INFORMATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS, OR OTHER RIGHTS. THERE IS NO WARRANTY BY ADAM
GOWDIAK SECURITY REASEARCH OR BY ANY OTHER PARTY THAT THE INFORMATION

CONTAINED IN THE THIS DOCUMENT WILL MEET YOUR REQUIREMENTS OR THAT IT WILL
BE ERROR-FREE.

YOU ASSUME ALL RESPONSIBILITY AND RISK FOR THE SELECTION AND USE OF THE

INFORMATION TO ACHIEVE YOUR INTENDED RESULTS AND FOR THE INSTALLATION,
USE, AND RESULTS OBTAINED FROM IT.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL ADAM
GOWDIAK SECURITY REASEARCH, ITS EMPLOYEES OR LICENSORS OR AFFILIATES BE
LIABLE FOR ANY LOST PROFITS, REVENUE, SALES, DATA, OR COSTS OF PROCUREMENT

OF SUBSTITUTE GOODS OR SERVICES, PROPERTY DAMAGE, PERSONAL INJURY,
INTERRUPTION OF BUSINESS, LOSS OF BUSINESS INFORMATION, OR FOR ANY SPECIAL,
DIRECT, INDIRECT, INCIDENTAL, ECONOMIC, COVER, PUNITIVE, SPECIAL, OR

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND WHETHER ARISING UNDER
CONTRACT, TORT, NEGLIGENCE, OR OTHER THEORY OF LIABILITY ARISING OUT OF THE
USE OF OR INABILITY TO USE THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN

IF ADAM GOWDIAK SECURITY REASEARCH OR ITS LICENSORS OR AFFILIATES ARE
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS.

INTRODUCTION

Microsoft PlayReady certificate may be generated in a dynamic manner for a client

device with the use of a group cert (common for same device models).

This implicates the risk of secrets theft (PlayReady group cert and key) from one

device only such as the demonstrated in CANAL+ environment [1]. This also

implicates no knowledge of the subscriber that makes use of the stolen secrets and

that relies on a fake identity for malicious purposes.

All of the above makes attribution harder too as the attacker can easily spoof the

identity of other innocent users (STB serial and MAC sufficient for that - these data

can be sometimes acquired from a store, where CANAL+ STBs are sold).

This documents presents two brief ideas of which goal is to make impersonation of

PlayReady client devices harder to accomplish. It also describes an idea to provide

support for license server “synchronization” / CDN authentication through the

concept of a delegation token.

While the presented ideas are quite generic and have not been verified in practice,

we still believe they constitute a potentially interesting starting point for exploration.

Some PlayReady environments offer hardware features. In our opinion, these should

be always taken into account as breaking hardware is usually harder to accomplish

when compared to software means. Our experiences indicate this is not the case

(environment of CANAL+ STi7111 based STB devices).

The reason for it could be either:

 an old / outdated PlayReady SW in CANAL+ boxes,

 no use of STi7111 hardware security features by PlayReady at all.

Additionally, the base PlayReady technology (PlayReady SDK) doesn’t support

authentication and authorization. We believe a minimal support for these should be

an integral part of the technology though. It could help:

 avoid situation where authentication is implemented improperly (such as

demonstrated in CANAL+ environment),

 provide a primitive for transfer of authentication state to other services or

interfaces (such as CDN), so that access to content would correspond to the

client and its license terms.

The content of PlayReady Server Agreements [2] indicate that licensees cannot

proceed with custom changes to PlayReady protocol, the licensing mechanism, etc.

In some way this leaves them at the mercy of the vendor to implement additional

security features specific to their environments.

PlayReady content protection implemented in software1 and on a client side has little

chances of a “survival” (understood as a state of not being successfully reverse

engineered and compromised). In that context, this is vendor’s responsibility to

constantly increase the bar and with the use of all available technological means.

#1 HARDWARE BINDING OF A PLAYREADY CERTIFICATE

All CANAL+ set-top-boxes contain the functionality to pair the STB with a smart

card. Similar idea could be used for PlayReady certificates as they could be bound to

the STB too.

For STB devices relying on STi7111 SoC, the pairing function relies on a HW secret

unique to the chip (SCK key) to establish CWPK (Control Words Pairing Key). It has

the following cryptographic formula:

This pairing key can be later used for decrypting CW (Control Word) keys2:

While security of STi711 chipset pairing has been shown to be insecure (Conax CAS

control words could be extracted from the chip as depicted in [3] and [4]), SCK key

compromise hasn’t been demonstrated so far3. In that context and regardless of the

vulnerabilities present in STi7111 chipsets, SCK key is worth considering as a feature

that could help in the verification of the box identity (client device).

BASE PRIMITIVES

STi7111 chipset provides hardware support for AES operations in CBC mode with the

use of SCK key too:

1 such as client for PlayReady SL2000 level
2 for Conax CAS, CW correspond to the keys changed each 10s and used to encrypt SAT TV signal.
3 compromise of SCK key would be devastating for the security of a pairing function.

The above functionality is used to implement FLASH / root file system security

(among others).

The leaf of a PlayReady certificate is composed of the following fields:

 ### CERT

 - random

 0000: be e2 7c bf 64 aa c0 c9 4c d6 0f f2 8a 05 e1 b4 ..|.d...L.......

 - seclevel 2000

 - uniqueid

 0000: 2c 24 1b 10 43 99 e0 33 30 41 34 30 37 32 44 38 ,$..C..30A4072D8

 - pubkey_sign

 0000: 1f 34 53 e7 68 e2 4f 0a 86 3c 02 60 2d 17 e4 24 .4S.h.O..<..-..$

 0010: cf 12 8f 96 6b 6d 29 a7 be 71 f1 14 89 e5 78 ad km)..q....x.

 0020: 77 37 5e fe ba e9 93 f1 bb f3 79 b2 7f 1e 08 00 w7^.......y.....

 0030: 86 fd 1b 30 e4 cf 33 36 82 cc a2 e2 b8 ef 9c a1 ...0..36........

 - pubkey_enc

 0000: d2 96 26 1e 5f 0b f2 4c c0 73 4d 76 c8 10 ac ef ..&._..L.sMv....

 0010: 7b 49 2c 16 04 07 8a 51 9c 6f 54 58 6c bf be df {I,....Q.oTXl...

 0020: ea a2 6c f7 29 cc 0f 74 75 d2 20 bd cf 64 fa 69 ..l.)..tu....d.i

 0030: fa 9e f2 80 c5 66 f0 83 c3 a0 80 d5 70 df ca 0d f......p...

 - digest

 0000: ad 80 a5 d2 03 9d de e5 5e ea 4a 58 5a c9 e3 c9 ^.JXZ...

 0010: 9f 7a df c6 d9 22 47 cf 9f 45 ae a9 3c 62 6d e2 .z..."G..E..<bm.

 - signature

 0000: 2b be 7d ba 8a 71 bb 61 1d 58 29 fc 39 71 a7 9b +.}..q.a.X).9q..

 0010: fe b9 a5 0e a4 af 61 6c 24 14 21 17 70 19 e5 d2 al$.!.p...

 0020: 8b 0f 5c 9f 9f 06 ab 48 e4 0a e2 3b 2b 79 59 66 H...;+yYf

 0030: 8c a0 bb 98 41 92 57 55 d5 51 2e c9 2c f5 32 ff A.WU.Q..,.2.

 - signkey

 0000: 2b be 7d ba 8a 71 bb 61 1d 58 29 fc 39 71 a7 9b +.}..q.a.X).9q..

 0010: fe b9 a5 0e a4 af 61 6c 24 14 21 17 70 19 e5 d2 al$.!.p...

 0020: f8 36 8d d6 69 a2 12 fb 74 cf 56 48 12 03 6f e3 .6..i...t.VH..o.

 0030: f3 87 7f 05 61 cf 10 fa c2 83 db 43 0d 88 98 37 a......C...7

Each leaf certificate contains ECC signature of the cert data conducted with the use

of the signature cert (group cert in this case). This signature has a fixed size (0x40

bytes or 512 bits).

GENERIC IDEA

PlayReady certificate could be bound with the STB device through the cryptographic

pairing function defined as following4:

4
 device certificate pairing relying on SCK HW key was initially described in the README.md file accompanying

Microsoft Play Ready research material [1]

The idea is to create CBC-MAC / HMAC like [5][6] Message Authentication Code of a

PlayReady leaf certificate with the use of SCK secret key unique to the target device.

While ECC signature verifies the integrity of the PlayReady certificate content, the

goal of the signature MAC is to make sure the certificate was created by a legitimate

device.

The resulting value could be made part of the PlayReady leaf certificate

through the implementation of an additional BCert attribute. Such an additional

attribute could be ignored for implementations with no support for the pairing.

The pros

 Server can verify that a given certificate has been generated by a target device

(server verifies a pairing of SCK key with PlayReady certificate, the identity

embedded in the cert is used for that)

 Valid certificate carries attribution information (target STB can be easily identified

and blacklisted)

The cons

 Certificate theft and use on a desktop still possible

 Access to SCK keys (or network APIs dedicated to values verification) at

server side (the need to integrate with CAS solution or provide interface for such

an integration)

#2 HARDWARE BINDING OF A PLAYREADY LICENSE REQUEST

In order to eliminate the risk related to the use of a stolen PlayReady certificate

(such as the one that has been bound to the hardware), the pairing function could

be used for the license request too.

PlayReady license request data is issued to the license server as SOAP XML data:

<?xml version="1.0" encoding="utf-8"?>

 <soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body>

 <AcquireLicense

 xmlns="http://schemas.microsoft.com/DRM/2007/03/protocols">

 <challenge>

 <Challenge

 xmlns="http://schemas.microsoft.com/DRM/2007/03/protocols/messages">

 <LA xmlns="http://schemas.microsoft.com/DRM/2007/03/protocols"

 Id="SignedData" xml:space="preserve">

 <Version>1</Version>

 <ContentHeader>

 <WRMHEADER

 xmlns="http://schemas.microsoft.com/DRM/2007/03/PlayReadyHeader"

 version="4.0.0.0">

 <DATA>

 ...

The integrity and authenticity of the license request is protected with the use of a

cryptographic signature (<SignatureValue> XML tag).

This signature could be also bound to the hardware with the use of a pairing

function similar to the one defined previously.

In order to eliminate the risk of replay attacks, the calculation should rely on

a time too5. The time should correspond to the time of issuing a license request:

The resulting value along TIME could be made part of the PlayReady

license request (through the implementation of additional XML attributes). Again,

such additional attributes could be ignored for implementations with no support for

the pairing.

The pros

 Server can verify that a given license request has been generated by a target

device (server verifies a pairing of SCK key with the license request, the server

also verifies whether the request time is valid)

 The attacker needs constant access to STB (theft of a PlayReady certificate is not

sufficient)

 Valid license requests reveal attacker’s identity (target STB can be easily

identified and blacklisted), this helps in tracking and anomalies detection

The cons

 Access to SCK keys (or network APIs dedicated to values verification)

at server side (the need to integrate with CAS solution or provide interface for

such an integration)

5 the time obtained from secure clock service could be used for that.

#3 ADDITIONAL AUTHENTICATION / DELEGATION TOKEN

PlayReady might provide support for additional authentication token to be returned

upon successful verification of the license request.

By default, PlayReady license response contains data that is assumed to be

consumed by the license requestor only (a client):

LICENSE

 CUSTOM DATA

 UserToken: 135abf9b-7006-46f2-9b3f-52f5d79f361a-stb

 BrandGuid: 448ab54c-d127-45f6-b651-4c59aee2f431

 LicenseType: NonPersistent

 BeginDate: 2022-06-27T10:29:41.2331761

 ExpirationDate: 2022-06-29T10:29:41.2331761

 ErrorCode: 0

 TransactionId: auto:56

 XMR LICENSE

 version: 3

 attr: 0001 OuterContainer

 attr: 0036 Unknown

 data

 0000: 00 00 00 39 00 00 00 18 d8 27 66 78 a6 c2 be 44 ...9.....'fx...D

 0010: 8f 88 08 ae 25 5b 01 a7 %[..

 attr: 0002 GlobalContainer

 attr: 000d Unknown

 data

 0000: 00 01 ..

 attr: 0032 DWORD_Versioned

 data

 0000: 00 00 00 40 ...@

 SecurityLevel

 level: SL2000

 attr: 0009 KeyMaterialContainer

 ContentKey

 key_id

 0000: 04 25 01 44 01 78 12 4f a5 51 56 ca f9 7a 2f f5

 v1: 1

 v2: 3

 enc_data_len: 0080

 enc_data

 0000: 4d 6e 63 6a 80 5d ea a2 20 e4 5f dc 1b 3a b8 07

 0010: 84 c5 d5 0c 91 37 69 6e 94 71 b6 0c 1a 20 f0 de

 0020: 24 79 38 8a 04 b0 02 e8 d2 4c fb 19 4d 24 b5 7e

 0030: e5 08 12 f3 28 46 76 82 43 13 34 20 d3 01 15 61

 0040: 03 04 71 a9 19 a5 98 c3 43 67 42 1e 5a 50 5e 8c

 0050: ac bf b4 c6 af b6 6d 58 7a c9 7a 3d 41 a2 d0 cb

 0060: dd 76 04 fd b5 02 2c 07 11 65 d6 53 0f 03 5c 66

 0070: e2 45 09 eb 0b 49 e2 db 99 9a d7 44 ce aa 8e e5

 attr: 002a ECCDeviceKey

 data

 0000: 00 01 00 40 d2 96 26 1e 5f 0b f2 4c c0 73 4d 76 ...@..&._..L.sMv

 0010: c8 10 ac ef 7b 49 2c 16 04 07 8a 51 9c 6f 54 58 {I,....Q.oTX

 0020: 6c bf be df ea a2 6c f7 29 cc 0f 74 75 d2 20 bd l.....l.)..tu...

 0030: cf 64 fa 69 fa 9e f2 80 c5 66 f0 83 c3 a0 80 d5 .d.i.....f......

 0040: 70 df ca 0d p...

 attr: 000b Signature

 data

 0000: 00 01 00 10 46 f5 e0 76 c1 87 f6 89 8d a7 cd e7 F..v........

 0010: be ad a6 64 ...d

License data primarily carries information about license terms and content key. As

such, it does not seem to be suitable for other uses6 such as verification of access to

CDN content. Such an access should still be a subject of a verification and

monitoring for several reasons:

 to prohibit unauthorized access to CDN, such an access could facilitate CDN

copy7

 to detect malicious patterns (massive downloads, access to excessive number of

assets, parallel access to content from devices that display one content at a time,

etc.).

It would be the best to make use of the hardware pairing function idea depicted as

#1 and #2 for CDN requests too. Taking into account the requirements for the

check (HW support, access to SCK keys or network APIs dedicated to values

verification) and the fact that CDN services might be outsourced to a 3rd party

(CANAL+ case), such an implementation might not be possible in practice.

The license response could however embed additional cryptographic token

() signed by the license server, which could act as a proof that a

license to given content had been successfully issued for a client (that a client is

both legitimate and authorized to access given content). Such a delegation token

could accompany requests to other services comprising content provider

infrastructure (i.e. CDN).

 could embed base information about both the client and the

license that was granted to it. This includes, but is not limited to the following data

(:

 client identity (UUID preferred than STB SERIAL and MAC addresses)

 content ID (UUID form preferred than URL8)

 random data

 license number (the number of licenses issued to the client)

 token validity time (directly corresponding to license period for content ID)

6 or pure transfer.
7
 a content in encrypted form should still be perceived as an asset requiring protection, CDN may

serve content encrypted with the use of static keys (CANAL+ case), providing unlimited access to
download such a content gives the advantage to the attacker (attackers just needs the key to
“unlock” the content).
8 UUID can hide the map to real content URL at CDN level.

 public part of (to identify the key used at the server side for the

purpose of verification)

ECC signature of the above (conducted with the use of a content provider specific

 server key dedicated solely for the purpose of issuing and verification

of delegation tokens) should be appended to the end of a . Such

data could constitute the base for any request issued to content provider service

requiring verification of license rights to content ().

 could be BASE64 encoded and provided to CDN service as HTTP

cookie9.

CDN service could proceed with the verification of the request for content by

verifying the data and authenticity of the received (signature

verification and checking that access to content is done within the period granted by

the license server in particular).

Upon successful verification and for speed purposes10, CDN service could optionally

issue a short-lived, browser session based crypto token for use in consecutive

requests (following the initial one).

ADDITIONAL CLIENT SIGNING

Due to the fact that CDN network could rely on plaintext HTTP protocol only (again,

CANAL+ case), sending over the plaintext communication channel

creates a risk that it could be sniffed from the network and used by a 3rd party

(reuse / replay attack).

This could be mitigated by additionally signing the with a

temporary (generated and valid with given delegation token only) ECC key

().

A unique could be provided11 by the license server as part of the license

response (it could be an integral part of a PlayReady license issued to the client).

The should be modified to reflect this change as well by including the

public part of the in it:

9 maximum size of a HTTP cookie is 4096 bytes for most web browsers, this should provide sufficient space to
accommodate request envelope data.
10

 to avoid license tokens verification at the time of each movie fragment request.
11 generated at the time of issuing each new license and as such valid in the context of given license only.

 client identity

 content ID

 random data

 license number

 token validity time

 public part of

 public part of

The reason for this is to provide credibility (through signature) of the ,

which can be used by PlayReady client to sign arbitrary data.

The signing should take place at the time of requesting data from a target service

such as CDN. The data should be extended too and beside signed

 , it might include information about the following:

 envelope id (corresponding to request id, incremented each time

 is generated for given)

 envelope validity time (issue / signing and expiration time) – contrary to license

period, this should correspond to shorter time range (validity of the request

should be estimated upon CDN response time, but it should not be longer than

30 sec), please note that shorter times might implicate the need for clock

synchronization

 any other data specific to the client and required by target service.

CDN service should internally hold information corresponding to the last successfully

verified received from given client (as session based data). Such an

information should be held for the time corresponding to the validity of the request.

CDN should also allow one session for a given client12, which implicates the need to

keep track of a single tuple per client (updated upon

access to new content or cleared at the time of a browser session termination).

CDN should reject (and log) any request corresponding to same content id with

envelope id value less or equal to the one held internally. Reception of such a

request would correspond to the duplicate request (such as sniffed one). Only STB

has the means to generate legitimate CDN requests (those signed with

12

 the assumption is that a client corresponds to one hardware device (STB), there is no way for the client to
watch two different movies (request two different content ids from CDN) at the same time (in parallel)

of which private part is available on a client device only and with envelope id value

being increased for each new request).

An illustration of the described mechanism of an additional authentication token and

relationships between various data is shown on Pic 1.

Pic 1 Additional PlayReady authentication token and its use for CDN access verification.

SHARED CRYPTO TOKEN FOR CDN ACCESS

Verification of a at the time of each request to CDN content might

not be efficient from a point of view of CDN response time (A/V playback).

The embedded in the could be however used to

deliver a shared secret from the server to PlayReady client in a secure manner. More

specifically, public key of could be used to encrypt such a value.

Security of CDN access used in CANAL+ environment relies on a shared secret too.

The problem is that this secret is same for all STB devices and VOD collections and

its knowledge is sufficient to access any CDN content (no authentication / sync

conducted with respect to license server, access irrespective of license terms).

An idea of a delegation token accompanied by a dedicated ECC key pair

() can be extended to implement secure and fast access to CDN content

though (or more generally, to any service of a 3rd party provider that needs to verify

client’s license status for a given asset).

A browser session based could be generated in a random fashion and

issued as a response to a successful verification of the initial

received by CDN (as HTTP cookie):

The above could be decrypted by the client:

A shared secret could be used to generate a security cookie for fast verification of

client access to CDN. Such a cookie could be the function of the following:

All consecutive requests to CDN corresponding to PlayReady client browser session

could rely on this security cookie (cookie value being verified at CDN server side

before serving any content).

The pros

 no need for integration with a content provider infrastructure (beyond the

knowledge of a for the verification of requests)

 access to content gets verified (access granted to authorized clients only),

decision about access can be conducted without access to clients id database

 access to content is synced with license server (content returned only if within

the allowed time period), though no actual syncing needs to be implemented as

license state is carried in a delegation token

 excessive / unusual number of requests or CDN download volume can be

detected

The cons

 STB compromise and a theft of and associated

data can still allow for content access (custom generation of

data), but such an access implicates content compromise any way (download

and decryption of content)

REFERENCES

[1] Microsoft Play Ready security research

https://security-explorations.com/mspr_cplus_info.html

[2] Microsoft PlayReady server agreements

https://www.microsoft.com/playready/licensing/server

[3] Security vulnerabilities of Digital Video Broadcast chipsets, HITB talk #2

https://security-explorations.com/materials/se-2011-01-hitb2.pdf

[4] Exploitation Framework for STMicroelectronics DVB chipsets, technical report

https://security-explorations.com/materials/SRP-2018-02-report.pdf

[5] CBC-MAC

https://en.wikipedia.org/wiki/CBC-MAC

[6] HMAC

https://en.wikipedia.org/wiki/HMAC

https://security-explorations.com/mspr_cplus_info.html
https://www.microsoft.com/playready/licensing/server
https://security-explorations.com/materials/se-2011-01-hitb2.pdf
https://security-explorations.com/materials/SRP-2018-02-report.pdf
https://en.wikipedia.org/wiki/CBC-MAC
https://en.wikipedia.org/wiki/HMAC

