

Security Vulnerability Notice

SE-2019-01-ORACLE-3

[Security vulnerabilities in Java Card, Issues 26-32]

DISCLAIMER

INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, AND TO THE MAXIMUM EXTENT

PERMITTED BY APPLICABLE LAW NEITHER SECURITY EXPLORATIONS, ITS LICENSORS OR

AFFILIATES, NOR THE COPYRIGHT HOLDERS MAKE ANY REPRESENTATIONS OR

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR THAT THE

INFORMATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,

TRADEMARKS, OR OTHER RIGHTS. THERE IS NO WARRANTY BY SECURITY

EXPLORATIONS OR BY ANY OTHER PARTY THAT THE INFORMATION CONTAINED IN THE

THIS DOCUMENT WILL MEET YOUR REQUIREMENTS OR THAT IT WILL BE ERROR-FREE.

YOU ASSUME ALL RESPONSIBILITY AND RISK FOR THE SELECTION AND USE OF THE

INFORMATION TO ACHIEVE YOUR INTENDED RESULTS AND FOR THE INSTALLATION,

USE, AND RESULTS OBTAINED FROM IT.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL

SECURITY EXPLORATIONS, ITS EMPLOYEES OR LICENSORS OR AFFILIATES BE LIABLE FOR

ANY LOST PROFITS, REVENUE, SALES, DATA, OR COSTS OF PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES, PROPERTY DAMAGE, PERSONAL INJURY,

INTERRUPTION OF BUSINESS, LOSS OF BUSINESS INFORMATION, OR FOR ANY SPECIAL,

DIRECT, INDIRECT, INCIDENTAL, ECONOMIC, COVER, PUNITIVE, SPECIAL, OR

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND WHETHER ARISING UNDER

CONTRACT, TORT, NEGLIGENCE, OR OTHER THEORY OF LIABILITY ARISING OUT OF THE

USE OF OR INABILITY TO USE THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN

IF SECURITY EXPLORATIONS OR ITS LICENSORS OR AFFILIATES ARE ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL

ERRORS.

Security Explorations discovered additional security vulnerabilities in Java Card [1]
technology used in financial, government, transportation and telecommunication sectors
among others. A table below, presents their technical summary:

ISSUE

TECHNICAL DETAILS

26 origin __checkMethod code

cause insufficient checks for targets of code execution transfer instructions

impact execution of unverified bytecodes

status verified

27 origin _getLocalReference code

cause no checks for local variable index

impact compromise of memory safety / arbitrary read access of card memory

status verified

28 origin _setLocalReference code

cause no checks for local variable index

impact compromise of memory safety / arbitrary write access to card memory

status verified

29 origin _getLocalShort code

cause no checks for local variable index

impact compromise of memory safety / arbitrary read access of card memory

status verified

30 origin _setLocalShort code

cause no checks for local variable index

impact compromise of memory safety / arbitrary write access to card memory

status verified

31 origin _getLocalInt code

cause no checks for local variable index

impact compromise of memory safety / arbitrary read access of card memory

status verified

32 origin _setLocalInt code

cause no checks for local variable index

impact compromise of memory safety / arbitrary write access to card memory

status verified

Issues 26-32 were successfully verified in the environment of the most recent Oracle Java

Card 3.1 SDK from Jan 2019 incorporating reference implementation of Java Card VM [2].

Issue 26 is due to an insufficient checking of methods' bytecodes by the CAP installer inside

__checkMethod subroutine. Bytecode verification is conducted by it in a linear fashion

rather than by following the real control flow. During this process, targets of all code

execution transfer instructions1 are expected to be within given method's range (between

method start and end location). No check for these targets is however conducted with

respect to bytecode granularity (different instruction lengths). As a result, it is possible to

transfer execution into the middle of a bytecode instruction and execute unverified bytecode

sequence embedded by its operand.

In our Proof of Concept code, we rely on specially crafted sequences of iipush bytecode

instructions in order to achieve a given sequence of unverified code. Each iipush opcode

1
 such as conditional and unconditional jumps, subroutine jumps and exception handlers.

can be used to embed 1 or 2 bytecode instructions followed by a jump to the next iipush

in the chain. This is illustrated on Fig. 1.

Fig. 1 Illustration of Issue 26 (a sequence of unverified instructions).

Issue 26 is not alone sufficient to compromise memory safety of a target Java Card VM. This

can be however accomplished by combining it with one of the Issues 26-32.

Issues 26-32 are caused by no security checks conducted at runtime with respect to

bytecode instructions conducting local variables' access (sload, sstore, aload, astore, etc.).

There are several groups of these instructions implementing various local variable access

(read or write and access short, reference or integer). These groups rely on a different

vulnerable subroutine for given access implementation as indicated in a table below.

VULNERABLE SUBROUTINE INSTRUCTION GROUP
_getLocalReference getfield_a_this, getfield_b_this,

getfield_s_this, getfield_i_this,

putfield_a_this, putfield_b_this,

putfield_s_this, putfield_i_this,

aload, aload_0, aload_1, aload_2,

aload_3, ret

_setLocalReference astore, astore_0, astore_1, astore_2,

astore_3

_getLocalShort sinc, sinc_w, sload, sload_0, sload_1,

sload_2, sload_3

_setLocalShort sinc, sinc_w, sstore, sstore_0, sstore_1,

sstore_2, sstore_3

_getLocalInt iinc, iinc_w, iload, iload_0, iload_1,

iload_2, iload_3

_setLocalInt iinc, iinc_w, istore, istore_0, istore_1,

istore_2, istore_3

Some of these instructions (indicated in red) can be encoded with arbitrary variable index

pointing beyond the allowed stack location of a currently executing method. Upon proper

arrangement of a stack layout and target local variable index, the content of saved methods'

frames can be accessed (Fig. 2).

Fig. 2 Frame stack overwrite with the use of an unbounded local variable access instruction.

As a result, the frame pointer value (FP) denoting base stack location for methods'

arguments and local variables can be changed to point to arbitrary memory address. Such a

changed FP value can be further used to read card memory from within the method higher

in a call stack (the one to which the return is made and which restores the overwritten FP

value). This memory reading can be achieved by the means of bytecode instructions

accessing local variables as they all rely on FP pointer.

The exploitation process implemented by our Proof of Concept code proceeds as following:

 read_stack_frame_s or read_stack_frame_a method is invoked recursively N

number of times in order to decrease the gap between FP and Top pointer values, FP

indicates local variables location and it is increased along every method call, Top

pointer denotes the area where method frames are saved and its value decreases for

every method call,

 method at call depth N exploits Issue 28 or Issue 30 for the change of a saved FP

pointer value (FP value used by method at call depth N-1), this change is

implemented by the means of a store instruction2 to variable location beyond current

method's stack frame, Issue 26 is exploited in order to hide the target store

instruction from the CAP file verifier,

 method at call depth N-1 restores the value of a changed (denoting a user provided

memory address) FP pointer, a local variable access results in a reading of a card

memory through FP,

 method at call depth N (a dedicated call to static store_val method) stores read

memory value into a static variable. It is not possible to simply return or store this

result to any instance field at call depth N-1 due to invalid FP pointer value, such an

2
 astore or sstore in our case.

operation can be conducted only by the method with valid SP and FP values3

(enforced at a higher call level),

 method at call depth N-2 cleans up the invalid FP pointer value (restore of the

legitimate saved FP value), which preserves the code from a crash.

Table below provides more details with respect to APDU commands implemented by our

Proof of Concept code illustrating the reported issues.

POC INS TYPE DESCRIPTION

localvars 0x10 READ_MEM Read card memory by the means of an
overwritten FP pointer
REQ APDU:
 00-01: offset to start reading memory from
 02: length of data to read
 03: local variable access to exploit

 00: sload / sstore bytecodes

 01: aload / astore bytecodes

RESP APDU:
 00-len: bytes of data read from card
memory starting at offset

Additionally, the Gen tool described in our initial report takes 2 arguments that correspond

to the following:

 arg0 - fixed value 6 (generation of a POC illustrating described issues),

 arg1 - the local variable index to use for sload / aload instructions. It can be used

to verify Issues 27 or 29 (by default the POC accesses card memory with the use of

local variable access at index 0)

REFERENCES

[1] JAVA CARD TECHNOLOGY

https://www.oracle.com/technetwork/java/embedded/javacard/overview/i

ndex.html

[2] JAVA CARD CLASSIC PLATFORM SPECIFICATION 3.0.5

https://www.oracle.com/technetwork/java/embedded/javacard/downloads/

index.html

About Security Explorations

Security Explorations (http://www.security-explorations.com) is a security

company from Poland, providing various services in the area of security and vulnerability

research. The company came to life as a result of a true passion of its founder for breaking

security of things and analyzing software for security defects. Adam Gowdiak is the

3
 bytecode instructions that trigger stack pop operation verify that SP and FP values are valid. Pop

operation occurs for all return, putfield and putstatic instructions (their arguments are

popped off the stack).

company's founder and its CEO. Adam is an experienced Java Virtual Machine hacker, with

over 100 security issues uncovered in the Java technology over the recent years. He is also

the Argus Hacking Contest co-winner and the man who has put Microsoft Windows to its

knees (the original discoverer of MS03-026 / MS Blaster worm bug). He was also the first

expert to present a successful and widespread attack against mobile Java platform in 2004.

