

Security Vulnerability Notice

SE-2012-01-ORACLE

[Security vulnerabilities in Java SE, Issues 1-19]

DISLAIMER

INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, AND TO THE MAXIMUM EXTENT

PERMITTED BY APPLICABLE LAW NEITHER SECURITY EXPLORATIONS, ITS LICENSORS OR

AFFILIATES, NOR THE COPYRIGHT HOLDERS MAKE ANY REPRESENTATIONS OR

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR THAT THE

INFORMATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,

TRADEMARKS, OR OTHER RIGHTS. THERE IS NO WARRANTY BY SECURITY

EXPLORATIONS OR BY ANY OTHER PARTY THAT THE INFORMATION CONTAINED IN THE

THIS DOCUMENT WILL MEET YOUR REQUIREMENTS OR THAT IT WILL BE ERROR-FREE.

YOU ASSUME ALL RESPONSIBILITY AND RISK FOR THE SELECTION AND USE OF THE

INFORMATION TO ACHIEVE YOUR INTENDED RESULTS AND FOR THE INSTALLATION,

USE, AND RESULTS OBTAINED FROM IT.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL

SECURITY EXPLORATIONS, ITS EMPLOYEES OR LICENSORS OR AFFILIATES BE LIABLE FOR

ANY LOST PROFITS, REVENUE, SALES, DATA, OR COSTS OF PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES, PROPERTY DAMAGE, PERSONAL INJURY,

INTERRUPTION OF BUSINESS, LOSS OF BUSINESS INFORMATION, OR FOR ANY SPECIAL,

DIRECT, INDIRECT, INCIDENTAL, ECONOMIC, COVER, PUNITIVE, SPECIAL, OR

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND WHETHER ARISING UNDER

CONTRACT, TORT, NEGLIGENCE, OR OTHER THEORY OF LIABILITY ARISING OUT OF THE

USE OF OR INABILITY TO USE THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN

IF SECURITY EXPLORATIONS OR ITS LICENSORS OR AFFILIATES ARE ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL

ERRORS.

Security Explorations discovered 19 security issues in the latest version of Java Platform,

Standard Edition. Most of them are caused by the unsafe use of Reflection API. Since,

security checks in use by the aforementioned API rely on a caller’s class, proper delegation

of the calls from untrusted code may lead to the successful bypass of these checks. This

may further lead to the creation of arbitrary class instances from restricted packages as well

as to the invocation of arbitrary methods on such objects. As a result, complete Java

security sandbox compromise can be usually obtained.

A table below, presents a technical summary of all of the issues found:

ISSUE

TECHNICAL DETAILS

1 origin com.sun.org.glassfish.external.statistics.impl.AverageRang

eStatisticImpl class

cause insecure use of invoke method of java.lang.reflect.Method class

impact arbitrary invocation of static methods with user provided arguments

type complete security bypass vulnerability

2 origin com.sun.org.glassfish.external.statistics.impl.BoundarySta

tisticImpl class

cause insecure use of invoke method of java.lang.reflect.Method class

impact arbitrary invocation of static methods with user provided arguments

type complete security bypass vulnerability

3 origin com.sun.org.glassfish.external.statistics.impl.BoundedRang

eStatisticImpl class

cause insecure use of invoke method of java.lang.reflect.Method class

impact arbitrary invocation of static methods with user provided arguments

type complete security bypass vulnerability

4 origin com.sun.org.glassfish.external.statistics.impl.CountStatis

ticImpl class

cause insecure use of invoke method of java.lang.reflect.Method class

impact arbitrary invocation of static methods with user provided arguments

type complete security bypass vulnerability

5 origin com.sun.org.glassfish.external.statistics.impl.RangeStatis

ticImpl class

cause insecure use of invoke method of java.lang.reflect.Method class

impact arbitrary invocation of static methods with user provided arguments

type complete security bypass vulnerability

6 origin com.sun.org.glassfish.external.statistics.impl.StringStati

sticImpl class

cause insecure use of invoke method of java.lang.reflect.Method class

impact arbitrary invocation of static methods with user provided arguments

type complete security bypass vulnerability

7 origin com.sun.org.glassfish.external.statistics.impl.TimeStatist

icImpl class

cause insecure use of invoke method of java.lang.reflect.Method class

impact arbitrary invocation of static methods with user provided arguments

type complete security bypass vulnerability

8 origin javax.management.remote.rmi.RMIConnectionImpl class

cause the use of OrderClassLoaders as Thread’s contextClassLoader

impact arbitrary access to restricted classes

type partial security bypass vulnerability

9 origin javax.management.remote.rmi.RMIConnectionImpl class

cause the use of null class loader as Thread’s contextClassLoader

impact arbitrary access to restricted classes

type partial security bypass vulnerability

10 origin bytecode verifier for Java SE 7

cause wrong check for a target of invokespecial bytecode (it is not limited to

this and super classes in case of an <init> method)

impact ability to create object instances without the need to call superclass’ initializer,

arbitrary access to restricted classes via custom class loader objects, further

impact not yet evaluated

type partial security bypass vulnerability

11 origin JVM implementation of finalizers

cause the use of null class loader as Thread’s contextClassLoader

impact arbitrary access to restricted classes

type partial security bypass vulnerability

12 origin difficult to classify

cause unrestricted getClass method call

impact arbitrary access to restricted classes

type partial security bypass vulnerability

13 origin java.lang.invoke.MethodTypes class

cause no security check in the in method

impact the ability to create java.lang.invoke.MethodTypes.Lookup object with

a system lookupClass, this allows to obtain method handles from restricted

classes and to issue calls on them

type partial security bypass vulnerability

14 origin com.sun.jmx.mbeanserver.GetPropertyAction class

cause public class

impact arbitrary access to Java system properties

type partial security bypass vulnerability

15 origin java.util.logging.LogManager class

cause lack of a type check of a logger handler prior to creating its instance

impact the ability to bypass security checks implemented in static class initializers of a

3rd party software

type partial security bypass vulnerability

16 origin com.sun.beans.finder.MethodFinder class

cause insecure use of getMethod method of java.lang.Class class

impact access to method objects of restricted classes

type exploitation vector (requires a security bypass precondition)

17 origin com.sun.beans.finder.ConstructorFinder class

cause insecure use of getConstructors method of java.lang.Class class

impact arbitrary access to constructors of restricted classes, creation of restricted

public classes

type exploitation vector (requires a security bypass precondition)

18 origin com.sun.org.glassfish.gmbal.util.GenericConstructor class

cause insecure use of getDeclaredConstructors and newInstance methods

of java.lang.Class class

impact creation of restricted public classes

type exploitation vector (requires a security bypass precondition)

19 origin com.sun.org.glassfish.gmbal.ManagedObjectManagerFactory

class

cause insecure use of getDeclaredMethod method of java.lang.Class class

impact access to method objects of restricted classes

type exploitation vector (requires a security bypass precondition)

Below, we provide additional comments with respect to the issues presented in the table

above:

 complete security bypass (CSB) issues (1-7)

These issues allow to bypass security checks relying on the class loader of a caller class.

In our Proof of Concept codes, we exploit them for the purpose of:

- issuing a call to forName method of java.lang.Class class in order to obtain

a reference to the restricted class (from sun package),

- creating an instance of java.lang.invoke.MethodHandles.Lookup object

with a system class object in the lookupClass field. Such a Lookup object

allows to obtain and call arbitrary methods of restricted classes.

The above is sufficient to obtain a complete compromise of JVM security sandbox. A

common exploitation scenario makes use of the created object instance of

java.lang.invoke.MethodHandles.Lookup class:

- a MethodHandle object to the getField method of sun.awt.SunToolkit

class is obtained and called in order to obtain a privileged instance of unsafe

field object of java.util.concurrent.atomic.AtomicBoolean class,

- the actual value held by a static unsafe field object is obtained (instance of

sun.misc.Unsafe class),

- a MethodHandle object to defineClass method of sun.misc.Unsafe class

is obtained and called in order to define a custom Helper class in a system

(null) class loader’s namespace and in a system (null) protection domain. As

a result, Helper class is fully privileged and can for example make a successful

call to setSecurityManager method of java.lang.System class and can

switch off the security manager completely (all in a proper doPrivileged

block).

 partial security bypass (PSB) issues (8-11)

These issues allow to bypass security manager’s check verifying access to restricted

packages such as sun, com.sun.imageio, com.sun.xml.internal.bind and

com.sun.xml.internal.ws. The bypass is always done with respect to some class

loader object (implicitly created or set as a contextClassLoader of the current

thread). In our Proof of Concept codes, we exploit them for the purpose of issuing a call

to forName method of java.lang.Class class. As a result, we are able to obtain a

reference to the class instance of a restricted class object (usually

sun.swing.SwingLazyValue or sun.awt.SunToolkit).

 partial security bypass (PSB) issues (12-13)

These issues when combined together allow for a complete compromise of JVM security

sandbox. The exploitation scenario is similar to those presented for issues 1-7.

 partial security bypass (PSB) issue 15

We verified that this issue can help bypass security of some 3rd party software (security

check in a static class initializer). In the sample Proof of Concept code, an instance of

java.lang.SecurityManager class is successfully created (console log shows an

exception after newInstance invocation and as a result of an illegal type cast

operation).

 exploitation vectors (EV) issues (16-19)

These issues allow to achieve a full JVM sandbox compromise upon the condition set up

by one of the partial security bypass issues. Each exploitation vector relies on a carefully

crafted sequence of Reflection API calls implemented by one publicly available class

(denoting the primary vector issue) and at least one class from a restricted sun package

(usually sun.swing.SwingLazyValue or sun.awt.SunToolkit). The goal of a

publicly available class is to either obtain a constructor or a method object of the

restricted class, so that its instance could be created or a method called. Exploitation

scenario is usually the same with respect to the Reflection API sequence making use of

restricted classes:

- a call to getField method of sun.awt.SunToolkit class is made in order to

obtain a privileged instance of unsafe field object of

java.util.concurrent.atomic.AtomicBoolean class,

- a call to getMethod method of sun.awt.SunToolkit class is made in order

to obtain a privileged instance of defineClass method object of

sun.misc.Unsafe class,

- the actual value held by a static unsafe field object is obtained (instance of

sun.misc.Unsafe class),

- static defineClass method is invoked on the obtained instance of

sun.misc.Unsafe class. As a result, custom Helper class is defined in a

system (null) class loader’s namespace and in a system (null) protection

domain. As a result, Helper class is fully privileged and can for example make a

successful call to setSecurityManager method of java.lang.System class

and can switch off the security manager completely (all in a proper

doPrivileged block).

Neither PSB issues 8-11, nor EV issues 16-19 could be used alone to achieve full JVM

compromise. However, when combined together (1 PSB issue + 1 EV issue), complete JVM

security sandbox escape could be achieved (malicious Java code could run unrestricted in

the context of JVM process). As a result, it is possible to form 12 independent complete

security bypass exploits (Issues 1-7, Issue 8 + 16, Issue 9 + 17, Issue 10 + 18, Issue 11 +

19, Issue 12 + 13).

Presented security issues violate many Secure Coding Guidelines for the Java Programming

Language [1]. This includes, but is not limited to:

 Guideline 4-4: Limit exposure of ClassLoader instances
 Guideline 4-5: Limit the extensibility of classes and methods
 Guideline 5-1: Validate inputs
 Guideline 7-3: Defend against partially initialized instances of non-final classes
 Guideline 9-1: Understand how permissions are checked
 Guideline 9-8: Safely invoke standard APIs that bypass SecurityManager checks

depending on the immediate caller's class loader

 Guideline 9-9: Safely invoke standard APIs that perform tasks using the immediate
caller's class loader instance

 Guideline 9-10: Be aware of standard APIs that perform Java language access checks
against the immediate caller

 Guideline 9-11: Be aware java.lang.reflect.Method.invoke is ignored for checking the
immediate caller

Attached to this report, there are 15 Proof of Concept codes that illustrate each of the

reported issues. The codes use the following convention when it comes to the class names:

 VulnX

Code implementing security bypass issue number X.

 VectorX

Code implementing exploitation vector number X.

All Proof of Concept codes have been successfully tested in a Windows OS environment and

with the following versions of Java SE:

 JRE/JDK 7 (version 1.7.0-b147)

 JRE/JDK 7u1 (version 1.7.0_01-b08)

 JRE/JDK 7u2 (version 1.7.0_02-b13)

 JRE/JDK 7u3 (version 1.7.0_03-b05)

 JRE/JDK 7u4 (version 1.7.0_04-ea-b18, early access release from 29 Mar 2012)

REFERENCES

[1] Secure Coding Guidelines for the Java Programming Language, Version 4.0,

http://www.oracle.com/technetwork/java/seccodeguide-139067.html

About Security Explorations

Security Explorations (http://www.security-explorations.com) is a security start-

up company from Poland, providing various services in the area of security and vulnerability

research. The company came to life in a result of a true passion of its founder for breaking

security of things and analyzing software for security defects. Adam Gowdiak is the

company's founder and its CEO. Adam is an experienced Java Virtual Machine hacker, with

over 50 security issues uncovered in the Java technology over the recent years. He is also

the hacking contest co-winner and the man who has put Microsoft Windows to its knees

(vide MS03-026). He was also the first one to present successful and widespread attack

against mobile Java platform in 2004.

