

Security Vulnerability Notice

SE-2012-01-ORACLE-6

[Security vulnerabilities in Java SE, Issue 50]

DISLAIMER

INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, AND TO THE MAXIMUM EXTENT

PERMITTED BY APPLICABLE LAW NEITHER SECURITY EXPLORATIONS, ITS LICENSORS OR

AFFILIATES, NOR THE COPYRIGHT HOLDERS MAKE ANY REPRESENTATIONS OR

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR THAT THE

INFORMATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,

TRADEMARKS, OR OTHER RIGHTS. THERE IS NO WARRANTY BY SECURITY

EXPLORATIONS OR BY ANY OTHER PARTY THAT THE INFORMATION CONTAINED IN THE

THIS DOCUMENT WILL MEET YOUR REQUIREMENTS OR THAT IT WILL BE ERROR-FREE.

YOU ASSUME ALL RESPONSIBILITY AND RISK FOR THE SELECTION AND USE OF THE

INFORMATION TO ACHIEVE YOUR INTENDED RESULTS AND FOR THE INSTALLATION,

USE, AND RESULTS OBTAINED FROM IT.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL

SECURITY EXPLORATIONS, ITS EMPLOYEES OR LICENSORS OR AFFILIATES BE LIABLE FOR

ANY LOST PROFITS, REVENUE, SALES, DATA, OR COSTS OF PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES, PROPERTY DAMAGE, PERSONAL INJURY,

INTERRUPTION OF BUSINESS, LOSS OF BUSINESS INFORMATION, OR FOR ANY SPECIAL,

DIRECT, INDIRECT, INCIDENTAL, ECONOMIC, COVER, PUNITIVE, SPECIAL, OR

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND WHETHER ARISING UNDER

CONTRACT, TORT, NEGLIGENCE, OR OTHER THEORY OF LIABILITY ARISING OUT OF THE

USE OF OR INABILITY TO USE THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN

IF SECURITY EXPLORATIONS OR ITS LICENSORS OR AFFILIATES ARE ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL

ERRORS.

Security Explorations discovered a critical security issue in Java SE Platform, Standard
Edition. It is caused by insecure implementation of a serialization functionality implemented

by com.sun.corba.se.impl.io.ObjectStreamClass class. A table below, presents

its technical summary:

ISSUE

TECHNICAL DETAILS

50 origin com.sun.corba.se.impl.io.ObjectStreamClass

cause the possibility to use same serialPersistentFields value for classes with

incompatible fields layout

impact arbitrary type confusion condition

type complete security bypass vulnerability

The problem with com.sun.corba.se.impl.io.ObjectStreamClass class stems from

the fact that it can reuse information about class fields layout declared in an incompatible

class and cached by the translateFields method in a translatedFields hashtable.

For the purpose of serialization, classes can explicitly declare, which fields take part in this

process. This is done by the means of a proper serialPersistentFields value

declaration. For com.sun.corba.se.impl.io.ObjectStreamClass class, if two

different classes use the same reference for the value of their

serialPersistentFields, the layout of the fields declared by that table will be the

same for both classes. This will be the case regardless of the fact that both classes could be

actually incompatible (the types of corresponding fields in the layout could be different) and

that the names declared by a shared serialPersistentFields value may not actually

denote a valid field from a target class. As a result, it is possible to use a different fieldID

(object field offset) value of ObjectStreamField class instance as an argument to

insecure putObject method of sun.corba.Bridge class. This can directly lead to

arbitrary type confusion condition.

It should be also mentioned that there is another class

(com.sun.corba.se.impl.orbutil.ObjectStreamClass_1_3_1) that has the

same, vulnerable implementation regarding the handling of cached

serialPersistentFields values as the one described above. This second class does

not seem to be however used.

Issue 50 was tested in the environment of latest versions of Java SE 5, 6 and 7 software.

We verified that it can be successfully used to achieve a complete JVM sandbox bypass in a

target system.

Attached to this report, there is a Proof of Concept codes that illustrates this. It has been

successfully tested in a fully patched Windows 7 OS environment and with Java SE 5 Update

22 (build 1.5.0_22-b03), Java SE 6 Update 35 (build 1.6.0_35-b10), Java SE 7 Update 7

(build 1.7.0_07-b10).

About Security Explorations

Security Explorations (http://www.security-explorations.com) is a security start-

up company from Poland, providing various services in the area of security and vulnerability

research. The company came to life in a result of a true passion of its founder for breaking

security of things and analyzing software for security defects. Adam Gowdiak is the

company's founder and its CEO. Adam is an experienced Java Virtual Machine hacker, with

over 50 security issues uncovered in the Java technology over the recent years. He is also

the hacking contest co-winner and the man who has put Microsoft Windows to its knees

(vide MS03-026). He was also the first one to present successful and widespread attack

against mobile Java platform in 2004.

