

Security Vulnerability Notice

SE-2012-01-ORACLE-3

[Security vulnerabilities in Java SE, Issues 23-26]

DISLAIMER

INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, AND TO THE MAXIMUM EXTENT

PERMITTED BY APPLICABLE LAW NEITHER SECURITY EXPLORATIONS, ITS LICENSORS OR

AFFILIATES, NOR THE COPYRIGHT HOLDERS MAKE ANY REPRESENTATIONS OR

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR THAT THE

INFORMATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,

TRADEMARKS, OR OTHER RIGHTS. THERE IS NO WARRANTY BY SECURITY

EXPLORATIONS OR BY ANY OTHER PARTY THAT THE INFORMATION CONTAINED IN THE

THIS DOCUMENT WILL MEET YOUR REQUIREMENTS OR THAT IT WILL BE ERROR-FREE.

YOU ASSUME ALL RESPONSIBILITY AND RISK FOR THE SELECTION AND USE OF THE

INFORMATION TO ACHIEVE YOUR INTENDED RESULTS AND FOR THE INSTALLATION,

USE, AND RESULTS OBTAINED FROM IT.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL

SECURITY EXPLORATIONS, ITS EMPLOYEES OR LICENSORS OR AFFILIATES BE LIABLE FOR

ANY LOST PROFITS, REVENUE, SALES, DATA, OR COSTS OF PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES, PROPERTY DAMAGE, PERSONAL INJURY,

INTERRUPTION OF BUSINESS, LOSS OF BUSINESS INFORMATION, OR FOR ANY SPECIAL,

DIRECT, INDIRECT, INCIDENTAL, ECONOMIC, COVER, PUNITIVE, SPECIAL, OR

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND WHETHER ARISING UNDER

CONTRACT, TORT, NEGLIGENCE, OR OTHER THEORY OF LIABILITY ARISING OUT OF THE

USE OF OR INABILITY TO USE THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN

IF SECURITY EXPLORATIONS OR ITS LICENSORS OR AFFILIATES ARE ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL

ERRORS.

Security Explorations discovered additional security issues in Java Platform, Standard

Edition. This in particular includes one issue in the latest version of Java SE 7 as well as two

attack vectors for Java SE 6 environment and previously reported issues. All issues are

similar to those presented in our previous reports (problems with Reflection API). A table

below, presents their technical summary:

ISSUE

TECHNICAL DETAILS

23 origin javax.management.modelmbean.DescriptorSupport class

cause insecure use of getConstructor and newInstance methods of

java.lang.Class class

impact creation of restricted public classes (scope limited to the classes with the

instance initialization method denoting one java.lang.String argument)

Type exploitation vector (requires a security bypass precondition)

24 origin javax.media.jai.OperationRegistry class

cause insecure use of invoke method of java.lang.reflect.Method class

impact arbitrary invocation of methods with user provided arguments

Type partial security bypass vulnerability

25 origin javax.swing.text.DefaultFormatter class

cause insecure use of getConstructor and newInstance methods of

java.lang.Class class

impact creation of restricted public classes (scope limited to the classes with the

instance initialization method denoting one java.lang.String argument)

type exploitation vector (requires a security bypass precondition)

26 origin java.lang.invoke.MethodHandles.Lookup class

cause access to package scoped classes via a specially chosen system class as

lookupClass value

impact obtaining access to inner classes to which a caller of the Lookup object has no

access

type complete security bypass vulnerability

Below, we provide additional comments with respect to the issues presented in the table

above:

 Issue 23 is presented as an exploit vector for Issue 8 (privileged OrderClassLoaders

as Thread's context classloader) and Java SE 6 environment. This exploit vector allows

for the creation of certain objects of classes from sun.security.action package.

This in particular includes such classes as GetPropertyAction or

OpenFileInputStreamAction. Once created, the objects of these classes can be

provided as an input to the doPrivilegedWithCombiner method call of

java.security.AccessController class. In a result, arbitrary read access to

system properties or user files could be obtained.

 Issue 24 was verified in the environment of a fully patched MacOS X Snow Leopard

system only. It’s Java VM environment contains additional classes beyond those

distributed as part of a standard Java SE software available from Oracle. This in

particular includes JAI classes. One of them

(javax.media.jai.OperationRegistry class) contains a security vulnerability in

the way Reflection API is used. As a result, it is possible to call methods of arbitrary

classes and obtain references to class objects from restricted packages. This can be

achieved by the means of a proper forName method invocation of java.lang.Class

class.

 Issue 25 is presented as an exploit vector for Issue 24 (and similar) and Java SE 6

environment. Similarly to Issue 23, this exploit vector also allows to obtain arbitrary read

access to system properties or user files. Proof of Concept code for Issues 24 and 25

was successfully tested in a MacOS environment only.

 Issue 26 can be used to achieve a complete JVM security bypass. It allows for the

creation of instances of non-public classes such as those with access rights limited to a

given package only. In our Proof of Concept code, we make use of the Lookup object

based on a javax.swing.JOptionPane class to obtain a method handle to the

constructor of javax.swing.JOptionPane$ModalPrivilegedAction inner class.

This constructor is later used to successfully create instances of the aforementioned

class and to obtain references to restricted java.lang.reflect.Method objects. The

exploitation scenario proceeds as following:

- A partially initialized instance of a Thread object is created that overloads

getContextClassLoader method in such a way, so that it always returns

null.

- A privileged (override field set to true) method reference to the private

start0 method of java.lang.Thread class is obtained. This method is later

called in order to successfully start the partially initialized Thread object.

- The null value set as Thread’s context class loader is used to obtain references

to restricted classes and sun.awt.SunToolkit class in particular. The loading

occurs in the context of a started thread (the value of its

contextclassloader is null).

- A privileged method reference to the private privateGetPublicMethods

method of java.lang.Class class is obtained. This method is later called in

order to obtain a list of public methods declared by a given restricted class.

- The exploitation scenario proceeds further in a similar way to the one presented

in our first report (SE-2012-01-ORACLE).

Attached to this report, there are several Proof of Concept code that illustrates all reported

vulnerabilities. They have been successfully tested in a Windows (Issues 23 and 26), and

Mac OS (Issues 24 and 25) environments and with the latest versions of Java SE 6 (Issues

23-25) and 7 (Issue 27).

About Security Explorations

Security Explorations (http://www.security-explorations.com) is a security start-

up company from Poland, providing various services in the area of security and vulnerability

research. The company came to life in a result of a true passion of its founder for breaking

security of things and analyzing software for security defects. Adam Gowdiak is the

company's founder and its CEO. Adam is an experienced Java Virtual Machine hacker, with

over 50 security issues uncovered in the Java technology over the recent years. He is also

the hacking contest co-winner and the man who has put Microsoft Windows to its knees

(vide MS03-026). He was also the first one to present successful and widespread attack

against mobile Java platform in 2004.

