
 

 

 

 

 

 

 

Security Vulnerability Notice 

SE-2012-01-IBM 

[Security vulnerabilities in Java SE, Issues 33-49] 

  



 

 

DISLAIMER 

INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT 

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, AND TO THE MAXIMUM EXTENT 

PERMITTED BY APPLICABLE LAW NEITHER SECURITY EXPLORATIONS, ITS LICENSORS OR 

AFFILIATES, NOR THE COPYRIGHT HOLDERS MAKE ANY REPRESENTATIONS OR 

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES 

OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR THAT THE 

INFORMATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, 

TRADEMARKS, OR OTHER RIGHTS. THERE IS NO WARRANTY BY SECURITY 

EXPLORATIONS OR BY ANY OTHER PARTY THAT THE INFORMATION CONTAINED IN THE 

THIS DOCUMENT WILL MEET YOUR REQUIREMENTS OR THAT IT WILL BE ERROR-FREE. 

YOU ASSUME ALL RESPONSIBILITY AND RISK FOR THE SELECTION AND USE OF THE 

INFORMATION TO ACHIEVE YOUR INTENDED RESULTS AND FOR THE INSTALLATION, 

USE, AND RESULTS OBTAINED FROM IT. 

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL 

SECURITY EXPLORATIONS, ITS EMPLOYEES OR LICENSORS OR AFFILIATES BE LIABLE FOR 

ANY LOST PROFITS, REVENUE, SALES, DATA, OR COSTS OF PROCUREMENT OF 

SUBSTITUTE GOODS OR SERVICES, PROPERTY DAMAGE, PERSONAL INJURY, 

INTERRUPTION OF BUSINESS, LOSS OF BUSINESS INFORMATION, OR FOR ANY SPECIAL, 

DIRECT, INDIRECT, INCIDENTAL, ECONOMIC, COVER, PUNITIVE, SPECIAL, OR 

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND WHETHER ARISING UNDER 

CONTRACT, TORT, NEGLIGENCE, OR OTHER THEORY OF LIABILITY ARISING OUT OF THE 

USE OF OR INABILITY TO USE THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN 

IF SECURITY EXPLORATIONS OR ITS LICENSORS OR AFFILIATES ARE ADVISED OF THE 

POSSIBILITY OF SUCH DAMAGES. 

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL 

ERRORS. 

  



 

 

Security Explorations discovered 17 security issues in the latest version of IBM SDK, Java 

Technology Edition software [1]. Most of them are caused by the unsafe use of a Reflection 

API. Since, security checks in use by the aforementioned API rely on a caller’s class, proper 

delegation of the calls from untrusted code may lead to the successful bypass of these 

checks. This may further lead to the creation of arbitrary class instances from restricted 

packages as well as to the invocation of arbitrary methods on such objects. As a result, 

complete Java security sandbox compromise can be usually obtained. 

A table below, presents a technical summary of all identified issues: 

ISSUE 
# 

TECHNICAL DETAILS  

33 origin com.ibm.rmi.util.ProxyUtil class 

cause insecure use of invoke method of java.lang.reflect.Method class 

impact arbitrary method invocation inside AccessController's doPrivileged 

block 

type complete security bypass vulnerability 

34 origin com.ibm.rmi.util.ProxyUtil class 

cause insecure use of invoke method of java.lang.reflect.Method class 

impact arbitrary method invocation inside AccessController's doPrivileged 

block 

type complete security bypass vulnerability 

35 origin com.ibm.xtq.xslt.runtime.extensions.JavaExtensionUtils class 

cause insecure use of invoke method of java.lang.reflect.Method class 

impact restricted package bypass via arbitrary method invocation 

type complete security bypass vulnerability 

36 origin com.ibm.xylem.instructions.StaticMethodInvocationInstructi

on class 

cause insecure use of invoke method of java.lang.reflect.Method class 

impact restricted package bypass via arbitrary method invocation 

type complete security bypass vulnerability 

37 origin com.ibm.xylem.instructions.JavaMethodInvocationInstruction 

class 

cause insecure use of invoke method of java.lang.reflect.Method class 

impact restricted package bypass via arbitrary method invocation 

type complete security bypass vulnerability 

38 origin com.ibm.rmi.io.ObjectStreamClass class 

cause insecure use of getDeclaredMethods method of java.lang.Class class 

impact access to declared methods of arbitrary classes 

type partial security bypass vulnerability 

39 origin com.ibm.rmi.io.ObjectStreamClass class 

cause insecure use of setAccessible method of 

java.lang.reflect.AccessibleObject class 

impact overriding standard access permissions of Reflection API object instances 

type partial security bypass vulnerability 

40 origin com.ibm.lang.management.ManagementUtils class 

cause insecure use of forName method of java.lang.Class class 

impact access to restricted classes 

type partial security bypass vulnerability 

41 origin com.ibm.xylem.interpreter.InterpreterUtilities class 

cause insecure use of getMethods method of java.lang.Class class 

impact access to methods of restricted classes 

type partial security bypass vulnerability 



 

 

42 origin com.ibm.xylem.interpreter.InterpreterUtilities class 

cause insecure use of getConstructors method of java.lang.Class class 

impact access to constructors of restricted classes 

type partial security bypass vulnerability 

43 origin com.ibm.rmi.corba.DynamicAny.DynValueCommonImpl class 

cause insecure use of forName method of java.lang.Class class 

impact access to restricted classes 

type partial security bypass vulnerability 

44 origin com.ibm.xtq.xslt.runtime.JavaMethodResolver class 

cause insecure use of getMethods method of java.lang.Class class 

impact access to methods of restricted classes 

type partial security bypass vulnerability 

45 origin com.ibm.xtq.xslt.runtime.JavaMethodResolver class 

cause insecure use of getConstructors method of java.lang.Class class 

impact access to constructors of restricted classes 

type partial security bypass vulnerability 

46 origin com.ibm.rmi.util.ClassCache class 

cause insecure use of forName method of java.lang.Class class 

impact access to restricted classes 

type partial security bypass vulnerability 

47 origin com.ibm.xtq.xslt.translator.XSLTCHelper class 

cause insecure use of getMethods method of java.lang.Class class 

impact access to methods of restricted classes 

type partial security bypass vulnerability 

48 origin com.ibm.xtq.xslt.translator.XSLTCHelper class 

cause insecure use of getConstructors method of java.lang.Class class 

impact access to constructors of restricted classes 

type partial security bypass vulnerability 

49 origin com.ibm.xtq.xslt.jaxp.compiler.TransformerFactoryImpl class 

cause insecure use of defineClass method of java.lang.ClassLoder class 

impact arbitrary class definition in a privileged classloader namespace 

type complete security bypass vulnerability 

 

Below, we provide additional comments with respect to the issues presented in the table 

above: 

 Issues 33 and 34 are alone sufficient to achieve a complete compromise of a Java 

security sandbox by the means of arbitrary methods invocation done from within a 

doPrivileged code block. In our exploit scenario, we invoke 

setSecurityManager method of java.lang.System class with a null 

argument. This allows for a disabling of all security checks in a target Java 

environment. 

 Issues 35, 36 and 37 are alone sufficient to achieve a complete compromise of a 

Java security sandbox by the means of arbitrary methods invocation. Our exploit 

scenario proceeds as following: 

- First we load an instance of a restricted 

com.ibm.oti.util.PriviAction class with the use of a forName 

method call of java.lang.Class class.  



 

 

- Then we obtain a reference to the private security field of 

java.lang.SecurityManager class by the means of a 

getDeclaredField method call of java.lang.Class class.  

- Later we obtain a constructor of com.ibm.oti.util.PriviAction class 

by calling getDeclaredConstructor method of java.lang.Class 

class. The latter is used for the creation of a PriviAction object instance 

conducting arbitrary setAccessible method call inside a doPrivileged 

method block. As an argument to the constructor, a reference to the looked 

up security field is passed.  

- Finally, we make a call to the doPrivileged method of 

java.security.AccessController class, which results in overriding of 

access permission checks for the security field. To complete a sandbox 

bypass, we set the value of this field to null. This has the effect of disabling 

of all security checks in a target Java environment. 

 

 Issues 38 and 39 need to be combined together to achieve a complete compromise 

of a Java security sandbox. The exploit scenario makes use of the possibility to 

override access permission checks for arbitrary methods (getDeclaredFieldImpl 

method of java.lang.Class class) and fields (security field of 

java.lang.SecurityManager class). 

 Issues 40, 41 and 42 need to be combined together to achieve a complete 

compromise of a Java security sandbox. Same for issues 43, 44, 45 and 46, 47, 48. 

Our exploit scenario relies again on the com.ibm.oti.util.PriviAction class, 

which is used to override access permission checks for the security field of 

java.lang.SecurityManager class. 

 Issue 49 illustrates hazards related to the insecure use of a defineClass method 

of java.lang.ClassLoader class. In our exploit code we define a specially 

crafted HelperClass in a privileged ProtectionDomain. This class implements a 

PrivilegedAction that  invokes setSecurityManager method of 

java.lang.System class with a null argument. 

Presented security issues violate many Secure Coding Guidelines for the Java Programming 

Language [2]. This includes, but is not limited to: 

 Guideline 4-4: Limit exposure of ClassLoader instances 
 Guideline 4-5: Limit the extensibility of classes and methods 
 Guideline 5-1: Validate inputs 
 Guideline 9-1: Understand how permissions are checked 
 Guideline 9-8: Safely invoke standard APIs that bypass SecurityManager checks 

depending on the immediate caller's class loader 
 Guideline 9-9: Safely invoke standard APIs that perform tasks using the immediate 

caller's class loader instance 
 Guideline 9-10: Be aware of standard APIs that perform Java language access checks 

against the immediate caller 
 Guideline 9-11: Be aware java.lang.reflect.Method.invoke is ignored for checking the 

immediate caller 



 

 

Attached to this report, there are 10 Proof of Concept codes that illustrate all of the reported 

issues. Each of them demonstrates a complete compromise of a Java security sandbox. The 

codes use the following convention when it comes to the class names: 

 VulnX 

Code implementing a security bypass issue number X. 

 Exploit 

Code implementing a complete Java security sandbox bypass exploitation. 

Our Proof of Concept codes have been successfully tested in a 32-bit Linux OS environment 

and with the following versions of IBM SDK: 

 IBM SDK, Java Technology Edition, Version 6.0 SR11 for Linux (32-bit x86) released on 

2012-08-10 (build pxi3260sr11-20120806_01(SR11)) 

 IBM SDK, Java Technology Edition, Version 7.0 SR1 for Linux (32-bit x86) released on 

2012-04-30 (build pxi3270sr1-20120330_01(SR1)) 

The only exception to the above statement are Issues 38 and 39, which do not seem to be 

present in SDK, Java Technology Edition, Version 6.0. 

REFERENCES 

[1] IBM developer kits                                 , 

http://www.ibm.com/developerworks/java/jdk/  

[2] Secure Coding Guidelines for the Java Programming Language, Version 4.0, 

http://www.oracle.com/technetwork/java/seccodeguide-139067.html 

 

About Security Explorations 

Security Explorations (http://www.security-explorations.com) is a security start-

up company from Poland, providing various services in the area of security and vulnerability 

research. The company came to life in a result of a true passion of its founder for breaking 

security of things and analyzing software for security defects. Adam Gowdiak is the 

company's founder and its CEO. Adam is an experienced Java Virtual Machine hacker, with 

over 50 security issues uncovered in the Java technology over the recent years. He is also 

the hacking contest co-winner and the man who has put Microsoft Windows to its knees 

(vide MS03-026). He was also the first one to present successful and widespread attack 

against mobile Java platform in 2004. 


