

Reverse engineering tools for

ST DVB chipsets

SRP-2018-01

DISCLAIMER

INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, AND TO THE MAXIMUM EXTENT

PERMITTED BY APPLICABLE LAW NEITHER SECURITY EXPLORATIONS, ITS LICENSORS OR

AFFILIATES, NOR THE COPYRIGHT HOLDERS MAKE ANY REPRESENTATIONS OR

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR THAT THE

INFORMATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,

TRADEMARKS, OR OTHER RIGHTS. THERE IS NO WARRANTY BY SECURITY

EXPLORATIONS OR BY ANY OTHER PARTY THAT THE INFORMATION CONTAINED IN THE

THIS DOCUMENT WILL MEET YOUR REQUIREMENTS OR THAT IT WILL BE ERROR-FREE.

YOU ASSUME ALL RESPONSIBILITY AND RISK FOR THE SELECTION AND USE OF THE

INFORMATION TO ACHIEVE YOUR INTENDED RESULTS AND FOR THE INSTALLATION,

USE, AND RESULTS OBTAINED FROM IT.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL

SECURITY EXPLORATIONS, ITS EMPLOYEES OR LICENSORS OR AFFILIATES BE LIABLE FOR

ANY LOST PROFITS, REVENUE, SALES, DATA, OR COSTS OF PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES, PROPERTY DAMAGE, PERSONAL INJURY,

INTERRUPTION OF BUSINESS, LOSS OF BUSINESS INFORMATION, OR FOR ANY SPECIAL,

DIRECT, INDIRECT, INCIDENTAL, ECONOMIC, COVER, PUNITIVE, SPECIAL, OR

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND WHETHER ARISING UNDER

CONTRACT, TORT, NEGLIGENCE, OR OTHER THEORY OF LIABILITY ARISING OUT OF THE

USE OF OR INABILITY TO USE THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN

IF SECURITY EXPLORATIONS OR ITS LICENSORS OR AFFILIATES ARE ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL

ERRORS.

INTRODUCTION ... 5

SlimCORE PROCESSOR .. 5

Register Set ... 6

Memory Addressing .. 7

Memory spaces ... 7

Reverse engineering approach ... 8

Instruction set ... 12

0x00 opcodes (MOV, SWAP) ... 12

0x01 opcodes (SHL, SHR) .. 13

0x02 opcodes (ADD) .. 14

0x03 opcodes (SUB) .. 14

0x04 opcodes (AND, TST) .. 14

0x05 opcodes (OR, TST) .. 15

0x06 opcodes (XOR) .. 16

0x07 opcodes (AND, MOV, MOVZX, MOVHI, BITSET, BITCLR, BITVAL, BITTST) 17

0x08 opcodes (JMP, J, JZ, JNE, JS, JNS, WAIT) ... 20

0x09 opcodes (JE, JB, JAE, JBE, JNE, JNS, JS, JZS, WAIT) .. 23

0x0a opcodes (LD) ... 26

0x0b opcodes (ST) ... 27

0x0c opcodes (CMP) .. 27

0x0d opcodes (JMP, BITSRCH, SYNC, RPT) .. 28

0x0e opcodes (MOV) ... 29

0x0f opcodes (copAES, copTDES) .. 30

Further work ... 30

SlimCORE FIRMWARE ... 31

Locating firmware code and data sections ... 32

Magic string and NOP instruction ... 33

Kernel symbols .. 34

Firmware architecture .. 34

TKD Crypto core .. 35

Commands and configuration variables ... 37

Firmware operation .. 40

STK commands' groups ... 43

Core routines related to CWPK and CWs handling ... 44

Crypto DMA handling .. 48

Original reverse engineering annotations .. 51

Recent firmware changes ... 52

TKD commands obfuscation ... 53

Prolog and epilog routines .. 54

New commands .. 55

Potential vulnerabilities and further research .. 59

Privileged customer mode .. 59

Privileged chip configuration state ... 60

Crypto DMA for read / write kernel access .. 60

Crypto DMA for chip registers / memory access .. 61

TKD commands for registers access.. 62

Coprocessor related commands ... 62

PTI ... 63

FDMA and STBUS .. 63

OTP security fuses ... 63

T1 bus configuration ... 64

Key initialization quirks ... 66

TOOLS .. 67

SlimCORE disassembler ... 67

Description .. 67

Sample uses .. 67

SlimCORE tracer .. 69

Tracer API .. 69

Description .. 70

Sample uses .. 75

REFERENCES .. 76

APPENDIX A ... 77

INTRODUCTION
STMicroelectronics' [1] SlimCORE processor is one of the helper cores of STi7111 DVB chipset SoC

(Fig. 1) [2]. This SoC is used as a base chipset of PayTV set-top-box devices of many digital TV

operators around the world (both satellite and terrestrial).

Fig. 1 SlimCORE location in STi7111 SoC.

This document provides a brief description of SlimCORE CPU and its firmware code used by Platform

N digital satellite TV provider at the end of 2011 in its Advanced Digital Broadcast (ADB) set-top-

boxes (models ITI-2849ST and ITI-2850ST)1. This was the base firmware code used by Security

Explorations to analyze security of STi7111 chipset as part of SE-2011-01 security research project

[3].

All of the information contained in this document are the result of a tedious reverse engineering

effort conducted in 2010 and 2011. As such, provided information may not be consistent with

original vendor's documentation for SlimCORE processor. It may be incomplete and include many

inaccuracies. Regardless of the above, it was sufficient to discover 2 security vulnerabilities (Issue 18

and 19) [4][5] in STi7111 SoC and implement tools facilitating the analysis of a chipset operation

(SlimCORE disassembler and tracer).

SlimCORE PROCESSOR
SlimCORE processor came to life as a result of a collaboration between ST UK and OneSpin after the

spin-off from Infineon [6]. It is a lightweight processor with 27 instructions and a 4-stage pipeline.

1
 SlimCORE firmware version STTKDMA-REL_3.1.6

Processor special features include a coprocessor interface, circular buffer operation, a STOP and RPT

instructions.

Register Set

SlimCORE is a 32-bit core. It has 14 general purpose 32-bit registers (R0-R14), a special register

corresponding to the instruction pointer (IP) and a special I/O register (R15). This is illustrated on Fig.

2.

Fig. 2 SlimCore registers.

We figured out that register R0 denotes a zero value due to its use as a base register of certain

memory addressing instructions:

 ld r9,[r0,0020] // 0x4080 = 0x4000+0000+0x20*4

Register R13 corresponds to the LINK register due to its frequent use as a holder of a return address

from subroutine calls:

 0039 0x00ed003b mov r13,#003b ;subroutine return addr

 003a 0x008c04e1 j l_04e1 ;init keys subroutine

 003b 0x00e40312 mov r4,#0312

Finally, register R14 was concluded to be an equivalent of a stack pointer register upon the

construction of instruction sequences denoting prologs of arbitrary subroutine calls:

########################

SUB l_050f

MAIN DISPATCH

r14 = 0xd0

########################

l_050f 0x00b01eff st r1,[r14,00ff] ;save r1 on stack

 0510 0x00b0aefe st r10,[r14,00fe] ;save r10 on stack

 0511 0x003ee002 sub r14,r14,r0,#0002 ;alloc locals

IP register denotes an index of a 32bit memory word containing an instruction to execute. The

memory location from which an instruction opcode is to be fetched and executed is described by

this formula:

 opcode_addr = IP*4

Register R15 indicates that a given register move, memory load or store operation are to be

conducted with respect to I/O communication link with one of chipsets' cores (such as TKD Crypto

core).

SlimCORE also contains register flags. We neither figured out, nor proceeded with reverse

engineering of the flags register location and its access methods (instructions)2. It is sufficient to say

that sequences of arithmetic and conditional instructions indicate the existence of an equivalent

(known from other CPU architectures) of the following flags:

 Z / EQ (zero or equal result),
 S (signed result),
 C (result with carry / borrow).

Memory Addressing

SlimCORE implements all memory addressing with the use of a word number - an index to an array

of 32bit data items.

Arbitrary memory accesses are implemented with the use of load (LD) and store (SR) instructions.

These instruction make use of the following addressing modes to indicate either source (LD) or

destination (ST) memory operand:

1) a register based addressing with an immediate index:

 [register+index]

2) a register based addressing and an immediate value incrementing the base register

 [register],register+=imm

Taking into account that the immediate index denotes a word number, for case 1 the target memory

address to access is computed as following:

 addr = register_content+4*index

SlimCORE processor operates in a little endian mode. As a result, 32-bit memory words for both

code (instruction opcodes) and data are stored starting from the least significant byte. Thus, a 32-bit

wide integer value of 0x11223344 is stored in memory as a sequence of 0x44, 0x33, 0x22 and 0x11

bytes.

Memory spaces

SLIMCore instructions can access either DATA or I/O memory spaces. In our environment, the

beginning of a DATA memory region was set at 0x4000 offset relative to the chip base address3. I/O

memory space began at 0x5e00 offset. All load / store instructions with reg2 opcode equal to 0

(register 0) referenced these areas solely with the use of an immediate index as indicated below:

2
 this wasn't necessary from a point of view of completing our security analysis of the chip.

3
 the value of 0xFE248000 for ADB set-top-boxes.

0x00b03085 st r3,[r0,0085] // store r3 to 0x5e14

0x00b0002c st r0,[r0,002c] // store r0 to 0x40b0

Additionally, arbitrary communication I/O operations (such as data exchange with TKD core) are

implemented with the use of special load, store and move instructions. This is illustrated in Table 1.

OPERATION TYPE INSTRUCTION DESCRIPTION

Store data (OUT operation) mov r15, reg Store the contents of register
reg to TKD core

ld r15,[r0,imm] Store the contents of a
memory location indicated by

imm index reg to TKD core

Load data (IN operation) mov reg, r15 load the contents of register

reg with the value read from
TKD core

st r15,[reg,imm] Load the contents of a memory
location indicated by imm
index reg with the value read
from TKD core

Table 1 Instructions for data exchange with Crypto TKD core.

It's worth to mention that IN and OUT channels linked to the I/O register seem to be associated with

different IN and OUT buffers (or a single buffer with different IN and OUT positions). We reason this

upon the following code implementing byte swap operation during DMA crypto transfer:

l_03c2 0x00030f3c mov r3,r15 ; r3 <- IN

 03c3 0x000330c0 swap r3,r3

 03c4 0x000f033c mov r15,r3 ; r3 -> OUT

 03c5 0x00030f3c mov r3,r15 ; r3 <- IN

 03c6 0x000330c0 swap r3,r3

 03c7 0x000f033c mov r15,r3 ; r3 -> OUT

 03c8 0x00030f3c mov r3,r15 ; r3 <- IN

 03c9 0x000330c0 swap r3,r3

 03ca 0x000f033c mov r15,r3 ; r3 -> OUT

 03cb 0x00030f3c mov r3,r15 ; r3 <- IN

 03cc 0x000330c0 swap r3,r3

 03cd 0x000f033c mov r15,r3 ; r3 -> OUT

If the I/O register was connected to the same buffer (or position), consecutive IN and OUT

operations would be able to change only 1 word, not 4 of them.

Reverse engineering approach

Reverse engineering of the format of all instructions described below was started from a format of a

single unconditional instruction jump (JMP), which was leaked by a GNU source code for SLIM Core

Generic driver [7]:

 // Init imem so every instruction is a jump to itself

 for (n = 0; n < core->imem_size/ 4; n++)

 SLIM_IMEM(core, n) = 0x00d00010 | (n & 0xf)

 | ((n & 0xfff0) << 4);

The above code sequence carries the following generic information about SlimCORE instructions:

 instruction opcode is 32-bit wide - hint A,
 memory addressing is conducted by a word index (n denotes an address of an instruction

itself, although the instruction opcode width is 4 bytes, n is incremented by 1) - hint B.

In the next step, the format of a memory store (ST) instruction was discovered. This was achieved by

the means of matching the pattern of the result provided by the GetPublicID command format
with a sequence of instruction opcodes embedded in SlimCORE firmware.

The result of GetPublicID command was provided as a sequence of four 32-bit words as
indicated by Fig. 3.

Fig. 3 Output buffer of a GetPublicID command.

The only 32-bit words opcode sequence (hint A) available in firmware code that exploited the filling
of an output buffer in a form of accesses to consecutive memory indexes (hint B) was conducted in
only one memory location as shown on Fig. 4.

Fig. 4 SlimCORE instruction sequence corresponding to GetPublicID result.

Our guess was confirmed by the means of a manual change of the located sequence and observation

of the result of GetPublicID command. Most importantly, a change of a ST R5 instruction with ST
R0 instruction resulted in a first word of the output buffer to be set to 0. This and other experiments
with the located opcode sequence such as those changing the index word and source register in
particular confirmed that these are indeed memory store instructions. As a result, its initial format
could be discovered:

ST - Store reg1 to memory location pointed by reg2 and memory index imm

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 0 reg1 reg2 imm

The format of a memory load instruction opcode (LD) was discovered building on the format of ST
opcode and by the means of changing the LD R5 instruction from the located opcode sequence and
observation of the output buffer obtained. More specifically, changing the source register field to
given index of the output buffer filled with a particular value resulted in that value being returned as
the first word of the output buffer (chip ID location). This was sufficient to confirm an initial format
of a memory load (LD) instruction:

LD - Load reg1 from memory location pointed by reg2 and memory index imm

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 0 0 0 reg1 reg2 imm

Knowledge about the format of JMP, LD and ST instructions was sufficient to discover all other
SlimCORE instruction opcodes.

Fig. 5 Running user provided code as part of GetPublicID code path.

We exploited the ability to change the operation of SLIM Core firmware in runtime and overwrote
SlimCORE firmware memory in a way that made it possible to inject a custom code sequence into
the GetPublicID code path. This is illustrated on Fig. 5.

Custom code sequence was implemented by the means of embedding an unknown instruction or
their sequence around the sequence of JMP, LD and STORE instructions only. The custom sequence
was formatted as following:

 JMP from firmware to user’s code path
o STORE the contents of registers (firmware context)

- LOAD user’s environment (contents of registers)

- EXECUTE unknown SLIMCore instruction opcode

- STORE user’s environment (contents of registers)
o LOAD the contents of registers (firmware context)

 JMP back to firmware code path.

An effect of the execution of an unknown instruction opcode to memory and registers was observed.
In our case, the custom SlimCore code sequence injected into the GetPublicID code path had the
following implementation:

int code[]={

 0x00b01050,// st r1,[r0,0050] offset 0x05b7

 0x00b02051,// st r2,[r0,0051] offset 0x05b8

 0x00b03052,// st r3,[r0,0052] offset 0x05b9

 0x00b04053,// st r4,[r0,0053] offset 0x05ba

 0x00b05054,// st r5,[r0,0054] offset 0x05bb

 0x00b06055,// st r6,[r0,0055] offset 0x05bc

 0x00b07056,// st r7,[r0,0056] offset 0x05bd

 0x00b08057,// st r8,[r0,0057] offset 0x05be

 0x00b09058,// st r9,[r0,0058] offset 0x05bf

 0x00b0a059,// st r10,[r0,0059] offset 0x05c0

 0x00b0b05a,// st r11,[r0,005a] offset 0x05c1

 0x00b0c05b,// st r12,[r0,005b] offset 0x05c2

 0x00b0d05c,// st r13,[r0,005c] offset 0x05c3

 0x00b0e05d,// st r14,[r0,005d] offset 0x05c4

 0x00000000,// SLOT FOR AN UNKNOWN INSTRUCTION

 OPCODE TO TEST

 0x00a10050,// ld r1,[r0,0050] offset 0x05d6

 0x00a20051,// ld r2,[r0,0051] offset 0x05d7

 0x00a30052,// ld r3,[r0,0052] offset 0x05d8

 0x00a40053,// ld r4,[r0,0053] offset 0x05d9

 0x00a50054,// ld r5,[r0,0054] offset 0x05da

 0x00a60055,// ld r6,[r0,0055] offset 0x05db

 0x00a70056,// ld r7,[r0,0056] offset 0x05dc

 0x00a80057,// ld r8,[r0,0057] offset 0x05dd

 0x00a90058,// ld r9,[r0,0058] offset 0x05de

 0x00aa0059,// ld r10,[r0,0059] offset 0x05df

 0x00ab005a,// ld r11,[r0,005a] offset 0x05e0

 0x00ac005b,// ld r12,[r0,005b] offset 0x05e1

 0x00ad005c,// ld r13,[r0,005c] offset 0x05e2

 0x00ae005d,// ld r14,[r0,005d] offset 0x05e3

 0x00d01c1a // jmp l_01ca offset 0x05e4

};

The abovementioned approach was used for a systemic discovery of SlimCORE instructions' format.

Instruction opcodes were discovered one by one. The scope of a discovery process was limited to

unknown opcodes from firmware code.

Beside the approach outlined above, some code patterns that started to become visible along

instructions' discovery process were also exploited. This in particular includes, but is not limited to

the patterns of MOV instructions (Fig. 6) along with CMP and conditional jump instructions (Fig. 7).

Fig. 6 MOV instructions patterns.

Finally, for proper conditional jump handling, the custom code needed to be extended to include

more than one instruction (a sequence of MOV, CMP and an unknown conditional jump).

Fig. 7 CMP and conditional jump instructions patterns.

Instruction set

SlimCORE uses a RISC-style fixed length instruction opcodes. All processor opcodes are 32-bit wide.

Only lower 24 bits of each opcode seem to be used though (bits 24-31 of instruction opcode are set

to a value of 0).

The processor implements memory access, branching, arithmetic, logical, shift and coprocessor

instructions among others. Below, a more detailed information regarding the opcode format and

operation of specific instructions is given. All instruction are listed according to their opcode value

(bits 20-23).

Please, note that in some cases little or no generalization of discovered instruction opcodes was

performed as reverse engineering process was focused on discovering instructions' functionality

needed for a successful analysis of firmware code, not to obtain a complete and accurate

information regarding SlimCORE instruction set.

0x00 opcodes (MOV, SWAP)

MOV - Move to register

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 reg1 0 0 0 0 reg2 0 0 1 1 1 1 0 0

Notation:

MOV reg1, reg2

Description:

Move the contents of register reg2 to register reg1.

SWAP - Swap registers

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 reg1 reg2 0 0 0 0 1 1 0 0 0 0 0 0

Notation:

SWAP reg1, reg2

Description:

Swaps contents of registers reg1 and reg2.

0x01 opcodes (SHL, SHR)

SHL - Logical shift left

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 reg1 reg2 0 0 0 0 0 0 0 imm

Notation:

SHL reg1,reg2,#imm

Description:

Shift the contents of registers reg2 to the left by the number of bits denoted by an immediate

operand and store result to register reg1.

SHR - Logical shift right

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 reg1 reg2 0 0 0 0 0 0 1 imm

Notation:

SHR reg1,reg2,#imm

Description:

Shift the contents of registers reg2 to the right by the number of bits denoted by an immediate

operand and store result to register reg1.

0x02 opcodes (ADD)

ADD - Arithmetic Add

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 reg1 reg2 reg3 imm

Notation:

ADD reg1, reg2, reg3, #imm

Description:

Add the contents of reg3 register and an immediate operand to the contents of reg2 register and

store result to register reg1.

0x03 opcodes (SUB)

SUB - Arithmetic Sub

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 reg1 reg2 reg3 imm

Notation:

SUB reg1, reg2, reg3, #imm

Description:

Substract the contents of reg3 register and an immediate operand from the contents of reg2 register

and store result to register reg1.

0x04 opcodes (AND, TST)

AND - Logical AND

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 reg1 reg2 reg3 0 0 0 0 0 0 0 0

Notation:

AND reg1,reg2,reg3

Description:

Perform logical AND of the contents of registers reg2 and reg3 and store result to register reg1.

AND - Logical AND

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 reg1 reg2 0 0 0 0 imm

Notation:

AND reg1,reg2,#imm

Description:

Perform logical AND of the contents of register reg2 and an immediate operand and store result to

register reg1.

TST - Test register value

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 reg 0 0 0 0 imm

Notation:

TST reg,#imm

Description:

Conduct logical AND of a register content with an immediate operand value without modifying the

register. The operation sets register flags accordingly (i.e. indicating zero / non-zero result).

TST - Test register value

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 reg1 reg2 0 0 0 0 0 0 0 0

Notation:

TST reg1,reg2

Description:

Conduct logical AND of the contents of registers reg1 and reg2 without modifying the registers. The

operation sets register flags accordingly (i.e. indicating zero / non-zero result).

0x05 opcodes (OR, TST)

OR - Logical OR

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 reg1 reg2 reg3 0 0 0 0 0 0 0 0

Notation:

OR reg1,reg2,reg3

Description:

Perform logical OR of the contents of registers reg2 and reg3 and store result to register reg1.

OR - Logical OR

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 reg1 reg2 0 0 0 0 imm

Notation:

OR reg1,reg2,#imm

Description:

Perform logical OR of the contents of register reg2 and an immediate operand and store result to

register reg1.

TST - Test

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 0 0 0 0 0 reg 0 0 0 0 0 0 0 0

Notation:

TST reg,reg

Description:

Test the value of register operand for zero and set register flags accordingly.

0x06 opcodes (XOR)

XOR - Logical XOR

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 reg1 reg2 reg3 0 0 0 0 0 0 0 0

Notation:

XOR reg1,reg2,reg3

Description:

Perform logical XOR of the contents of registers reg2 and reg3 and store result to register reg1.

XOR - Logical OR

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 reg1 reg2 0 0 0 0 imm

Notation:

XOR reg1,reg2,#imm

Description:

Perform logical XOR of the contents of register reg2 and an immediate operand and store result to

register reg1.

0x07 opcodes (AND, MOV, MOVZX, MOVHI, BITSET, BITCLR, BITVAL, BITTST)

AND - Logical AND

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 reg1 reg2 1 1 bitnum 0 0 0 0 0

Notation:

AND reg1, reg2, (1^bitnum-1)

Description:

Perform logical AND of the contents of registers reg2 and a bitmask denoted by a bitnum operand to

register reg1.

MOV - Move to register

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 reg1 reg2 1 1 bitnum shift

Notation:

MOV reg1, (reg2>>shift)&(1^bitnum-1)

Description:

Shift the contents of registers reg2 to the right by shift bits, and store result number of bits denoted

by a bitnum operand to register reg1.

MOV - Move to register

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 reg1 reg2 0 0 bitnum shift

Notation:

MOV reg1, (reg2&(1^bitnum-1))<<shift

Description:

Shift the lower number of bits denoted by a bitnum operand of register reg2 to the left by shift bits

and store the result to register reg1.

MOV - Move to register

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 reg1 reg2 0 1 bitnum 0 0 0 0 0

Notation:

MOV reg1, reg2&(1^bitnum-1)

Description:

Move the lower number of bits denoted by a bitnum operand of register reg2 to register reg1.

MOV - Move to register

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 reg1 reg2 0 0 bitnum 0 0 0 0 0

Notation:

MOV reg1, reg2&(1^bitnum-1)

Description:

Move the lower number of bits denoted by a bitnum operand of register reg2 to register reg1.

MOV - Move to register

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 reg1 reg2 0 1 0 0 0 0 1 shift

Notation:

MOV reg1, reg2&0x01<<shift

Description:

Shift the lower bit of register reg2 to the left by a shift operand and store the result to register reg1.

MOVZX - Move to register and zero extend

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 reg1 reg2 0 1 0 1 0 0 0 0 0 0 0 0

Notation:

MOVZX reg1, reg2 &0xff

Description:

Move the contents of the lower 8 bits of register reg2 to register reg1 and set the remaining bits

(bits 8-31) of reg1 to 0.

MOVHI - Move to register high

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 reg1 reg2 0 0 bitnum 1 0 0 0 0

Notation:

MOVHI reg1, (reg2&(1^bitnum-1))<<16

Description:

Move bitnum number of lower bits of register reg2 to high 16 bits of register reg1.

MOVHI - Move to register high

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 reg1 reg2 0 0 1 0 0 0 0 1 0 0 0 0

Notation:

MOVHI reg1, reg2<<16

Description:

Move 16 lower bits of register reg2 to high 16 bits of register reg1.

BITSET - Bit set

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 reg1 reg2 0 0 0 0 0 0 1 shift

Notation:

BITSET reg1, reg2&0x01<<shift

Description:

Set bit number of register reg1 denoted by a shift operand to the value of bit 0 of register reg2.

BITCLR - Bit clear

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 reg1 0 0 0 0 0 0 0 0 0 0 1 shift

Notation:

BITCLR reg1, 0x01<<shift

Description:

Set bit number of register reg1 denoted by a shift operand to the value of 0.

BITVAL - Get bit value

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 reg1 reg2 1 1 0 0 0 0 1 shift

Notation:

BITVAL reg1, reg2, #1<<shift

Description:

Get the value of a bit number denoted by n operand from register reg2 and store it in register reg1.

BITTST - Bit test

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 0 0 reg 1 1 0 0 0 0 1 shift

Notation:

BITTST reg, #1<<shift

Description:

Test the value of a bit number denoted by a shift operand in register reg.

0x08 opcodes (JMP, J, JZ, JNE, JS, JNS, WAIT)

JMP - Jump register

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 0 1 0 0 0 0 0 0 reg 0 0 0 0 0 0 0 0

Notation:

JMP reg

Description:

Unconditionally jump to target location given by the contents of register operand.

J - Always jump to target location

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 1 0 0 0 0 0 0 target

Notation:

J target

Description:

Unconditionally jump to target location given by an operand.

JZ - Jump if zero

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 0 0 0 0 0 0 1 target

Notation:

JZ target

Description:

Jump to target location given by an operand register flags indicate zero result.

JNE - Jump if not equal

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 1 0 0 0 0 0 1 target

Notation:

JNE target

Description:

Jump to target location given by an operand if register flags indicate non-equal result.

JS - Jump if signed

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 0 0 0 0 0 1 0 target

Notation:

JS target

Description:

Jump to target location given by an operand register flags indicate signed result.

JNS - Jump if not signed

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 1 0 0 0 0 1 0 target

Notation:

JNS target

Description:

Jump to target location given by an operand if register flags indicate non-signed result.

JXX1 - Unknown conditional jump

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 1 1 1 0 0 1 0 target

Notation:

JXX1 target

Description:

Perform conditional jump based on some unknown condition.

WAIT1 - Wait / perform coprocessor op

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 1 0 1 0 0 0 1 target

Notation:

WAIT1

Description:

Wait for some coprocessor result ?

WAIT2 - Wait / perform coprocessor op

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 1 0 1 1 0 0 0 target

Notation:

WAIT2

Description:

Wait for some coprocessor result ?

0x09 opcodes (JE, JB, JAE, JBE, JNE, JNS, JS, JZS, WAIT)

JE - Jump if equal

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 0 0 0 0 0 0 1 target

Notation:

JE target

Description:

Jump to target location given by an operand register flags indicate equal result.

JB - Jump if below

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 0 0 0 0 1 0 0 target

Notation:

JB target

Description:

Jump to target location given by an operand if register flags indicate below result.

JAE - Jump if above or equal

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 1 0 0 0 1 0 0 target

Notation:

JAE target

Description:

Jump to target location given by an operand if register flags indicate above or equal result.

JBE - Jump if below or equal

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 0 0 0 0 1 1 1 target

Notation:

JBE target

Description:

Jump to target location given by an operand if register flags indicate below or equal result.

JNE - Jump if not equal

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 1 0 0 0 0 0 1 target

Notation:

JNE target

Description:

Jump to target location given by an operand if register flags indicate a non-equal result.

JNS - Jump if not signed

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 1 0 0 0 0 1 0 target

Notation:

JNS target

Description:

Jump to target location given by an operand if register flags indicate a non-signed result.

JS - Jump if signed

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 0 0 0 0 0 1 0 target

Notation:

JS target

Description:

Jump to target location given by an operand if register flags indicate a signed result.

JZS - Jump if zero or signed

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 0 0 0 0 0 1 1 target

Notation:

JZS target

Description:

Jump to target location given by an operand if register flags indicate a zero or signed result.

JXX2 - Unknown conditional jump

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 0 1 1 0 1 0 0 target

Notation:

JXX2 target

Description:

Perform conditional jump based on some unknown condition.

JXX3 - Unknown conditional jump

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 0 1 0 1 0 0 0 target

Notation:

JXX3 target

Description:

Perform conditional jump based on some unknown condition.

WAIT3 - Wait / perform coprocessor op

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 1 1 0 0 0 0 1 target

Notation:

WAIT3

Description:

Wait for some coprocessor result ?

WAIT4 - Wait / perform coprocessor op

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 1 0 1 1 0 0 0 target

Notation:

WAIT4

Description:

Wait for some coprocessor result ?

0x0a opcodes (LD)

LD - Load from memory

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 reg1 0 0 0 0 reg2 m imm

Notation:

LD reg1,[reg2+imm]

Description:

Load register operand reg1 with the content of a memory location denoted by register reg2 and an

imm index.

If reg2 field equals 0, bit m denotes whether access to DATA (bit value 0) or I/O space (bit value 1)

memory region is made.

LD - Load from memory

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 reg1 0 0 0 1 reg2 Imm

Notation:

LD reg1,[reg2],reg2+=#imm

Description:

Load register operand reg1 with the content of a memory location denoted by register reg2 and

increment the content of reg2 by an immediate operand.

0x0b opcodes (ST)

ST - Store to memory

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 0 reg1 reg2 m Imm

Notation:

ST reg1,[reg2+imm]

Description:

Store the content of register operand reg1 to memory location denoted by register reg2 and an imm

index.

If reg2 field equals 0, bit m denotes whether access to DATA (bit value 0) or I/O space (bit value 1)

memory region is made.

ST - Store to memory location

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 1 reg1 reg2 Imm

Notation:

ST reg1,[reg2],reg2+=#imm

Description:

Store the content of register operand reg1 to memory location denoted by register reg2 and

increment the content of reg2 by an immediate operand.

0x0c opcodes (CMP)

CMP - Compare register value

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 0 0 0 reg 0 0 0 0 imm

Notation:

CMP reg,#imm

Description:

Compare register content with an immediate operand value. The operation sets register flags

accordingly.

0x0d opcodes (JMP, BITSRCH, SYNC, RPT)

JMP - Jump to address

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 0 0 0 target hi 0 0 0 1 target lo

Notation:

JMP target

Description:

Unconditionally jump to target location given by an operand.

BITSRCH - Search for bits

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 reg1 reg2 0 0 0 0 0 1 0 0 0 0 0 0

Notation:

BITSRCH TOPMOST reg1, reg2

Description:

Search for the first bit set to value 1 in reg2 starting from the topmost bit and store the found bit

number in reg1.

SYNC1 - Sync on / perform some coprocessor op

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Notation:

SYNC1

Description:

Synchronize on some coprocessor operation ?

SYNC2 - Sync on / perform some coprocessor op

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0

Notation:

SYNC2

Description:

Synchronize on some coprocessor operation ?

RPT - Repeat

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n

Notation:

RPT n

Description:

Repeat execution of a next instruction n times.

RPT - Repeat

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Notation:

RPT 16

Description:

Repeat execution of a next instruction 16 times.

0x0e opcodes (MOV)

MOV - Move value to register

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 reg imm

Notation:

MOV reg,#imm

Description:

Move 16-bit immediate operand to given register.

0x0f opcodes (copAES, copTDES)

copAES - AES operation

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Notation:

copAES

Description:

Perform AES crypto coprocessor operation.

copTDES - TDES operation

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Notation:

copTDES

Description:

Perform TDES crypto coprocessor operation.

Further work

The conditional instructions are one of the first candidates for any further work aimed at the

improvement of the correctness of the presented instruction's set and SlimCORE disassembler tool's

operation.

The reverse engineering of these instructions requires acquiring information about actual conditions

(register flags) that are used for a decision about a given conditional jump. This in particular includes

information about S (signed result) and C (borrow / carry) conditions.

The operation of the conditional jump instructions based on the above conditions can be reverse

engineered with the use of instruction sequences influencing these conditions (register flags). This in

particular includes CMP, ADD and SUB instructions:

 JS - jump if signed
MOV r1,#0001

MOV r2,#0002

SUB r1,r1,r2,#0000

JS label

 JNS - jump if not signed
MOV r1,#0001

MOV r2,#0002

SUB r1,r2,r1,#0000

JNS label

 JC - jump if carry
MOV r1,#0001

MOV r2,#0002

SUB r1,r1,r2,#0000

JC label

MOV r1,#ffff

MOV r2,#ffff

movhi r1,r2<<16

add r1,r1,r0,#0001

JC label

 JNC - jump if not carry
MOV r1,#0001

MOV r2,#0002

SUB r1,r2,r1,#0000

JNC label

MOV r1,#0001

MOV r2,#0002

add r1,r1,r0,#0000

JNC label

For all of the above instruction sequence, the jump should be taken only if a given target condition is
met. The problem with such an approach is that one needs to be careful about conditional jumps
that may take multiple conditions into account (carry and zero, signed and zero). For this reason, an
observation for a signed an zero results need to be done as well (similarly to the case of signed and
carry result, for which the conditions can be distinguished as jump for carry will take place also for
non-signed results).

Additionally, opcodes of conditional jump instructions should be also inspected as in most CPU
architectures, a target condition is encoded with the use of a dedicated bit field within the
instruction opcode.

SlimCORE FIRMWARE
In STi7111 environment, SlimCore runs firmware code implementing access to all crypto related

functionality of TKD core (main crypto core of the SoC).

Prior to running the firmware code it is loaded into the memory space of the SlimCORE processor.

The loading process is implemented by the sttkdma_core_user.ko device driver and its

st_tkdma_loader subroutine in particular (Fig. 8).

Fig. 8 SlimCORE firmware loading code.

Both data and code sections for the firmware are loaded. The data section usually starts at 0x4000

offset relative to the chip base address. Instruction opcodes start at offset 0x6000. These offsets can

be obtained from the implementation of st_tkdma_check_fw subroutine (Fig. 9).

Fig. 9 SlimCORE firmware offsets in chipset memory space.

Locating firmware code and data sections

Inspection of the sttkdma_core_user.ko device driver and its st_tkdma_loader

subroutine is only one of the ways to locate4 data corresponding to SlimCORE firmware sections.

Data bytes corresponding to firmware code and data sections can be also successfully located by

inspecting the code of the following firmware checking subroutines:

 st_tkdma_check_fw (information about code start, code end and data start)
 st_tkdma_loader_checksum (information about code start, code size, data start and

data size)
Below, two other ways are described to achieve this.

4
 and dump the contents of both data and code sections of the firmware.

Magic string and NOP instruction

We have observed that a code section for the firmware starts just behind the HAL_INT_NAME

symbol of sttkdma_core_user.ko device driver (Fig. 10).

Fig. 10 Firmware code location and a magic string.

This symbol holds a constant 32-bit value of 0x00534552, which corresponds to "RES" string.

Additionally, we have observed that for both old (STTKDMA-REL_3.1.6) and new (STTKDMA-

REL_3.9.2) firmware versions, firmware code sequence started with the following instructions:

l_0000 0x00200000 add r0,r0,r0,#0000

 0001 0x00200000 add r0,r0,r0,#0000

 0002 0x00d00080 sync

The above observations can be used to easily locate the start of a firmware code section in

sttkdma_core_user.ko device driver. All that is needed to accomplish that is to find a first

occurrence of two 32-bit integer values in it (a magic string 0x00534552 and nop5 instruction

0x00200000).

The end of a code section can be located by exploiting an observation that it always ends with a

return from a subroutine instruction and is immediately followed by a firmware data section (its first

word equal to 0):

0x00840d00 jmp r13 ;jmp to link register (subroutine

 return address)

0x00000000 ;firmware data section start

The method described above to locate SlimCORE firmware code and data sections in

sttkdma_core_user.ko device driver file is implemented in our SCDisasm tool.

5
 add r0,r0,r0,#0000 can be considered as an equivalent of a nop instruction taking into account that

r0 is a zero register.

Kernel symbols

In some cases, the file of sttkdma_core_user.ko device driver might not be immediately

available as part of the main root FS file system distribution6.

For such cases, the image of a device driver along the code of all subroutines necessary to locate

SlimCORE firmware need to be obtained from kernel memory by the means of a /proc filesystem.

The /proc/modules file contains information about dynamically loaded kernel modules, their

addresses and sizes. It can be used to obtain the kernel address where sttkdma_core_user.ko

device driver was loaded:

sttkdma_core_user 34384 6

stdrmcrypto_ioctl,stdrmcrypto_core_user,sttkdma_ioctl_local,rfs_sec,nand_crypt,adb_tkdma_ioctl

, Live 0x81931280 (P)

The /proc/kallsyms file contains information about kernel symbols such as those of

dynamically loaded kernel modules:

81937494 d HAL_INT_NAME [sttkdma_core_user]

81932c60 T STTKDMA_Term [sttkdma_core_user]

81932b00 T STTKDMA_ConfigureTK [sttkdma_core_user]

819346c0 t sttkdmaHal_GetNonce [sttkdma_core_user]

8192b380 u STAPLER_InterruptMake [sttkdma_core_user]

81934080 t sttkdmaHal_ProcessCommand [sttkdma_core_user]

819392cc b sttkdma_ControlBlock_p [sttkdma_core_user]

81933600 T STTKDMA_DecryptKey [sttkdma_core_user]

81933480 T STTKDMA_GetCounter [sttkdma_core_user]

81934e20 t sttkdmaHal_configuretk [sttkdma_core_user]

81933360 T STTKDMA_ReadPublicID [sttkdma_core_user]

...

819357a0 t st_tkdma_loader_checksum [sttkdma_core_user]

...

The above information can be used to dynamically extract firmware data and code sections directly

from the kernel memory.

Firmware architecture

SlimCORE firmware is responsible for direct access to and interaction with a TKD Crypto core

component of STi7111 SoC. The firmware operation is controlled from within the

sttkdma_core_user.ko device driver through an API interface (Fig. 11).

The API interface is implemented by the means of STK commands and their arguments. They are

written to dedicated firmware data locations (0x401c STK cmd, 0x4020-0x402c STK cmd arguments)

to trigger proper command dispatch.

6
 this was the case for ITI-2849ST and ITI-2850ST set-top-boxes. The sttkdma_core_user.ko device driver

file was available as part of ADB loader partition (ADB Loader v7 SSU image, which was successfully decrypted
by the means of a custom Hitachi SH4 emulator with I/O proxy [11]).

SlimCore firmware processes STK commands and issues corresponding TKD commands directly to

TKD Crypto core. The results of STK commands (if any) are written back to the arguments buffer.

Fig. 11 SlimCORE firmware architecture (associated components and APIs).

STK commands are issued as a response to IOCTL calls received by sttkdma_ioctl_local.ko

device driver from user space library by the means of special device files7.

TKD Crypto core

TKD Crypto core is the main core of STi7111 SoC responsible for all cryptographic and key storage
related operations. The core is controlled by the means of 32-bit TKD commands and associated
arguments being sent to an I/O port.

TKD Crypto Core supports the following ciphers:

 TDES_ECB_128
 AES_ECB_128
 AES_CBC_128
 AES_CTR_128

Generic format of a TKD command is presented on Fig. 12 .

7
 /tmp/sttkdma_ioctl, /tmp/sttkdma_core for ITI-2849ST and ITI-2850ST set-top-boxes.

Fig. 12 Generic TKD command format.

TKD commands make it possible to store a given source value to a given target key memory location.
Depending on the chip configuration, the source value can be encrypted or decrypted8 with the use
of a given key. As a result, TKD commands provide means for a secure loading of secret key values
into the chip.

The following TKD commands are usually at the base of an implementation of an arbitrary PayTV CAS
with chipset pairing functionality:

 Setting encrypted Control Word Pairing Key (CWPK)

- TKD CMD 0x00ff0000

- Interpreted as decryption (always) of register input (0xff) with SCK key (0x00) and
storing the result at a key slot 0x00

 Setting encrypted Control Word (CW)

- TKD CMD 0x20ff0001

- Interpreted as decryption (0x01) of register input (0xff) with CWPK key (key slot
0x00) and storing the result at a key slot 0x20.

It's worth to mention that for targets in the range of 0x00-0x04, there is no output provided as a
result of a given TKD command execution (secret pairing key locations). Such an output is however
provided for targets 0x05-0x0f.

Beside making it possible to load encrypted key values to the chip, TKD crypto core also implements
commands facilitating crypto DMA operations. Their generic format for standard DMA (making use
of user provided crypto keys) is presented on

Fig. 13.

8
 more details pertaining to decryption / encryption bit of TKD command and observed peculiarities can be

found in APPENDIX A.

Fig. 13 Lower 16 bits of a TKD command for standard DMA operation.

TKD command corresponding to DMA crypto transfer making use of the SCK key is presented on Fig.

14.

Fig. 14 Lower 16 bits of a TKD command for SCK DMA operation.

The higher 16 bits (bits 16-31) of the above crypto DMA commands are set to the value 0xffff.

Finally, TKD Crypto core maintains dedicated memory locations for arbitrary key storage:

 0x3100 - descrambling keys (keys 0-31, key size 0x10)
 0x3420 - crypto DMA / custom user keys (keys 0-7 corresponding to given DMA channel id,

key size 0x10).

Memory locations corresponding to descrambler keys are not readable, while the area
corresponding to DMA / custom user keys can be read by user code. Key at index N corresponds to
DMA channel N.

For CBC and CTR based ciphers, the following I/O register locations are also used:

 0x3004-0x3010 - CBC IV vector
 0x3014-0x3020 - CTR IV vector

Commands and configuration variables

There are more than a dozen of STK commands implemented by the sttkdma_core_user.ko

device driver, which correspond to different TKD commands issued to TKD Crypto core. The mapping

of STK commands to their TKD counterparts is shown in Table 2.

ASSOCIATED NAME9 STK CMD
LOCATION10

STK CMD TKD COMMAND

9
 these names do not necessarily correspond to the sttkdma_core_user.ko device driver symbols, but

are all the symbols that could be associated with given STK commands through other device drivers and user
space libraries.

STTKDMA_reset 0x4068 0x00
 0x406c 0x01 01ff8101
setCWPK /

set_descrambling_internalkeys

0x4070 0x02 00ff8101

STTKDMA_DecryptKey /

scdc_ImplModifyKeyIndex /

set_protected_descramblingkey

0x4074 idx11<<8 | 0x03 20ff0001 + idx<<24

 0x4078 idx<<8 | 0x04 10ff0101 + idx<<24
getPublicID 0x407c 0x05
 0x4080 idx<<8 | 0x06 20ff0010 + idx<<24
 0x4084 idx<<8 | 0x80 10ff8001 + idx<<24
 0x4088 0x10 03ff0001
 0x408c 0x11 04000001
sttkdmaHal_GetNonce 0x4090 0x12 ffff0401
resetAES_NOT_TDES 0x13
 0x4094 0x20 02ff8101
 0x4098 0x21 80ff0203
 0x409c 0x22 81ff0203
 0x40a0 0x23 82ff0203
sttkdmaHal_GetSWReg 0x40a4 0x24 83ff0203
STTKDMA_GetCounter 0x4068 0x40
STTKDMA_NOP 0x4068 0x41

Table 2 The mapping of STK commands to TKD commands.

SlimCORE firmware reads STK commands and their optional arguments from the following SlimCORE

data section locations:

0x401C STK CMD ID

0x4020-0x402c STK CMD buffer for arguments and output result

Additionally, SlimCORE firmware makes an active use of several other data section locations for

storage of various configuration and state settings. This is illustrated in Table 3.

FIRMWARE DATA SECTION OFFSET VARIABLE DESCRIPTION

0x4004 DMA CONFIG
 0x01 container DMA
 0x02 decrypt
 0x04-0x10 channel id (0-7)
 0x20 AES algorithm
 0x40 SCK dma
 0x80 custom DMA cmd
 0x100 CBC mode
 0x200 CTR mode
 0x400 IV seed
 0x800 swap_halves
 0x1000 IV init?
 0x2000 swap_bytes

0x4008 DMA source (aligned to 0x20)

10

 in SlimCORE firmware.
11

 idx denotes key index.

0x400c DMA destination (aligned to 0x20)

0x4010 DMA size (in 32-bit words)

0x4014 part of STK command

0x4018 TK CONFIG

0x401C STK cmd

0x4020-0x402c STK cmd buffer (arguments / result)

0x4030 Customer mode

0x4040 state flag indicating STK cmd 0x01 was executed
(checked by STK cmd 0x04)

0x4044 state flag indicating STK cmd 0x02 was executed
(checked by STK cmds 0x03, 0x10 and 0x11)

0x4048 state flag indicating STK cmd 0x05 was executed
(checked by STK cmds 0x01, 0x02, 0x04 and
0x80)

TKD operation mode:

 0x01 tkd is active
 0x02 dma is active

0x404c state flag indicating STK cmd 0x10 was executed
(checked by STK cmd 0x03)

0x4050 state flag indicating STK cmd 0x11 was executed
(checked by STK cmd 0x12)

0x4054 state flag indicating STK cmd 0x20 was executed
(checked by STK cmds 0x21, 0x22, 0x23 and
0x24)

0x40b0 SW counter

0x40b4 number of packets for DMA transfer

0x4120 bit idx of current stack frame

0x4124 bit idx of next stack frame

Table 3 SlimCORE firmware configuration / state variables.

Firmware operation

Generic schema of a SlimCORE firmware operation is illustrated on Fig. 15.

Fig. 15 SlimCORE firmware operation (STTKDMA-REL_3.1.6).

Execution of a SlimCORE firmware starts at instruction idx 0. First, some FW data locations are

initialized to 0 such as a counter variable:

 000b 0x00b0002c st r0,[r0,002c] ;counter = 0

 000c 0x00e60010 mov r6,#0010 ;memory idx of 0x4040 addr

 000d 0x00

d00090 sync

 000e 0x00d00009 rpt 9 ;loop counter=9

 000f 0x00b10601 st r0,[r6],r6+=#0001 ;store 0 to [0x4040-0x4060]

After that, chip customer mode register is read and a corresponding data section variable is

initialized with a new value:

 0010 0x00a5008a ld r5,[r0,008a] // 0x5e28 ;chip customer mode register

 0011 0x00e40040 mov r4,#0040

 0012 0x00735c80 and r3,r5,0x0f ;low nibble of chip customer mode

 0013 0x00c03005 cmp r3,#05

 0014 0x00981026 je l_0026 ;-> chip customer mode == 0x05

 0015 0x00c03002 cmp r3,#02

 0016 0x00981028 je l_0028 ;-> chip customer mode == 0x02

 0017 0x00c03006 cmp r3,#06

 0018 0x0098102a je l_002a ;-> chip customer mode == 0x06

 0019 0x00c0300b cmp r3,#0b

 001a 0x0098102c je l_002c ;-> chip customer mode == 0x0b

 001b 0x00c0300f cmp r3,#0f

 001c 0x0098102e je l_002e ;-> chip customer mode == 0x0f

 001d 0x00c03003 cmp r3,#03

 001e 0x00981030 je l_0030 ;-> chip customer mode == 0x03

 001f 0x00c03007 cmp r3,#07

 0020 0x00981032 je l_0032 ;-> chip customer mode == 0x07

 0021 0x00c03008 cmp r3,#08

 0022 0x00981034 je l_0034 ;-> chip customer mode == 0x08

 0023 0x00c0300c cmp r3,#0c

 0024 0x00981036 je l_0036 ;-> chip customer mode == 0x0c

 0025 0x00d00318 jmp l_0038

l_0026 0x00e40002 mov r4,#0002 ;05 -> 0x02 as customer mode

 0027 0x00d00318 jmp l_0038

l_0028 0x00e40004 mov r4,#0004 ;02 -> 0x04 as customer mode

 0029 0x00d00318 jmp l_0038

l_002a 0x00e40005 mov r4,#0005 ;06 -> 0x05 as customer mode

 002b 0x00d00318 jmp l_0038

l_002c 0x00e40008 mov r4,#0008 ;0b -> 0x08 as customer mode

 002d 0x00d00318 jmp l_0038

l_002e 0x00e40009 mov r4,#0009 ;0f -> 0x09 as customer mode

 002f 0x00d00318 jmp l_0038

l_0030 0x00e40010 mov r4,#0010 ;03 -> 0x10 as customer mode

 0031 0x00d00318 jmp l_0038

l_0032 0x00e40011 mov r4,#0011 ;07 -> 0x11 as customer mode

 0033 0x00d00318 jmp l_0038

l_0034 0x00e40020 mov r4,#0020 ;08 -> 0x20 as customer mode

 0035 0x00d00318 jmp l_0038

l_0036 0x00e40021 mov r4,#0021 ;0c -> 0x21 as customer mode

 0037 0x00d00090 sync

l_0038 0x00b0400c st r4,[r0,000c] // 0x4030 ;store customer mode

Next, a subroutine call is made to initialize TKD Crypto key storage to default key values12:

 0039 0x00ed003b mov r13,#003b ;subroutine return addr

 003a 0x008c04e1 j l_04e1 ;init all of the keys (CWPK, CWs)

 003b 0x00e40312 mov r4,#0312

The call above is made with the use of a J (jump to target location) instruction. Prior to it, the LINK

register (r13) is loaded with a subroutine return value indicating the instruction following the jump.

Finally, dispatch structures corresponding to several semi-threads implemented by the firmware

code are initialized. As part of the initialization procedure, memory for threads' saved context gets

allocated and an address of a dispatch address for a given thread is placed into it:

 0050 0x00e60080 mov r6,#0080 ;base addr of temp stack frames

 0051 0x00e700d0 mov r7,#00d0

 0052 0x00e4024f mov r4,#024f ;thread code location (dispatch handler)

 0053 0x00e50008 mov r5,#0008 ;thread dispatch bitmask=0x08

 0054 0x00d55040 bitsrch topmost,r5,r5 ;thread dispatch idx=3 (bit# of 0x08)

 0055 0x00155004 shl r5,r5,#0004 ;thread dispatch idx*16=0x30

 0056 0x002e5700 add r14,r5,r7,#0000 ;0xd0+0x30=0x100

12

 implementation details of a key initialization subroutine (04e1) are presented in the following
subparagraph of this paper.

 0057 0x00255600 add r5,r5,r6,#0000 ;0x80+0x30=0xb0

 0058 0x00d00090 sync

 0059 0x00b0450d st r4,[r5,000d] ;[0xbd] = 0x024f (thread handler)

 005a 0x00b0e50e st r14,[r5,000e] ;[0xbe] = 0x100 (thread stack frame)

 005b 0x00d0000d rpt d ;init saved registers (r2-r14) to 0

 005c 0x00b10501 st r0,[r5],r5+=#0001 ;[0xb0-0xbc] = 0

In SlimCORE firmware, different threads are frequently represented by consecutive bits of a bitmask

(thread idx 0 is represented by bit value 0x01, thread idx 1 is denoted by bit value 0x02 and so on).

This is also the case for the above (thread dispatch bitmask 0x08 indicates thread dispatch idx 0x03).

Semi-threads dispatching

SlimCORE firmware makes use of 4 semi-threads (dispatch indices 0-3) dedicated for the handling of

TKD commands, crypto DMA and firmware initialization procedure among others.

There are two data section variables that indicate current's thread to execute (dispatch):

 0x4120 - current thread bitmask idx

 0x4124 - next thread bitmask idx

Upon completing the initialization code, main dispatch subroutine responsible for semi-threads

execution is invoked. This subroutine first stores execution context of a currently executing semi-

thread:

 0512 0x00a10048 ld r1,[r0,0048] // 0x4120 ;current thread's bitmask idx

 0513 0x00d11040 bitsrch topmost,r1,r1 ;current thread's dispatch idx

 0514 0x00111004 shl r1,r1,#0004 ;thread dispatch idx*16

 0515 0x00ea0080 mov r10,#0080 ;base addr of temp stack frames

 0516 0x00211a00 add r1,r1,r10,#0000 ;r1=thread's stack frame

 ...

 0519 0x00b02102 st r2,[r1,0002] ;save r2

 051a 0x00b03103 st r3,[r1,0003] ;save r3

 051b 0x00b04104 st r4,[r1,0004] ;save r4

 051c 0x00b05105 st r5,[r1,0005] ;save r5

 051d 0x00b06106 st r6,[r1,0006] ;save r6

 051e 0x00b07107 st r7,[r1,0007] ;save r7

 051f 0x00b08108 st r8,[r1,0008] ;save r8

 0520 0x00b09109 st r9,[r1,0009] ;save r9

 0521 0x00b0a10a st r10,[r1,000a] ;save r10

 0522 0x00b0b10b st r11,[r1,000b] ;save r11

 0523 0x00b0c10c st r12,[r1,000c] ;save r12

 0524 0x00b0d10d st r13,[r1,000d] ;save r13 (thread's ret addr)

 ...

 0526 0x00b0e10e st r14,[r1,000e] ;save r14 (thread's stack)

The dispatch of different threads is done by rotating the current thread's bitmask idx variable over a

bit field of 4 bits (firmware data section at offset 0x4124):

l_0581 0x00a40049 ld r4,[r0,0049] // 0x4124 ;current thread bitmask idx

 ...

l_0585 0x00404300 tst r4,00

 0586 0x00881589 jz l_0589

 0587 0x00b04048 st r4,[r0,0048] // 0x4120 ;next thread bitmask idx

 ...

l_0589 0x00c04010 cmp r4,#10 ;is bitmask idx == 0x10 ?

 058a 0x009c158d jne,s l_058d ;-> no

 058b 0x00e40001 mov r4,#0001 ;yes, start from bitmask 0x01

 058c 0x00d0581e jmp l_058e

l_058d 0x00144001 shl r4,r4,#0001 ;shift bitmask idx by 1 to

 ;the left

 ...

 058f 0x00b04049 st r4,[r0,0049] // 0x4124 ;store new thread bitmask idx

The effect of the above becomes visible when thread's execution context gets restored by the main

threads dispatching subroutine:

 05a2 0x00a20048 ld r2,[r0,0048] // 0x4120 ;next thread's bitmask idx

 05a3 0x00d22040 bitsrch topmost,r2,r2 ;next thread's dispatch idx

 05a4 0x00122004 shl r2,r2,#0004 ;thread idx*16

 05a5 0x00ea0080 mov r10,#0080 ;base addr of tmp stack frames

 05a6 0x00222a00 add r2,r2,r10,#0000 ;r2=thread's stack frame

 05a7 0x00d00090 sync

 05a8 0x00ae020e ld r14,[r2,000e] // 0x0038 ;load r14 (thread's stack)

 05a9 0x00ad020d ld r13,[r2,000d] // 0x0034 ;load r13 (thread's ret addr)

 05aa 0x00ac020c ld r12,[r2,000c] // 0x0030 ;load r12

 05ab 0x00ab020b ld r11,[r2,000b] // 0x002c ;load r11

 05ac 0x00aa020a ld r10,[r2,000a] // 0x0028 ;load r10

 05ad 0x00a90209 ld r9,[r2,0009] // 0x0024 ;load r9

 05ae 0x00a80208 ld r8,[r2,0008] // 0x0020 ;load r8

 05af 0x00a70207 ld r7,[r2,0007] // 0x001c ;load r7

 05b0 0x00a60206 ld r6,[r2,0006] // 0x0018 ;load r6

 05b1 0x00a50205 ld r5,[r2,0005] // 0x0014 ;load r5

 05b2 0x00a40204 ld r4,[r2,0004] // 0x0010 ;load r4

 05b3 0x00a30203 ld r3,[r2,0003] // 0x000c ;load r3

 05b4 0x00a10201 ld r1,[r2,0001] // 0x0004 ;load r1

 05b5 0x00a20202 ld r2,[r2,0002] // 0x0008 ;load r2

 05b6 0x00840d00 jmp r13 ;continue execution in a new

 ;thread context

STK commands' groups

The thread responsible for main STK command dispatch makes sure that certain commands are

executed following an execution of some other commands. This state-machine is implemented by

the means of state variables 0x4040-0x4054 (Table 3). This information makes it possible to

associate certain TKD commands with each other (select their groups). The meaning of the

commands can be also discovered upon the knowledge of the operation of a dependant commands

(a prior command required to be executed). The results of such a grouping and a discovery of some

unknown commands meaning is illustrated in Table 4.

COMMAND
GROUP

STK
COMMAND

TKD
COMMAND

DESCRIPTION

CWPK1 0x01 01ff8101 Decrypt CWPK input with SCK key (key
location 0x8113) and store it at key location
1

idx<<8 | 0x04 10ff0101 + idx<<24 Decrypt key input with CWPK key at index 1
and store it at key location 10+idx (crypto
DMA / AES keys)

13

 we verified that correct CWPK key at index 0 can be successfully set for the following TKD commands:
0x00ff8101, 0x00ff0101 and 0x00ff0001. Thus, we conclude that location 0x81 corresponds to SCK key.

CWPK0 0x02 00ff8101 Decrypt CWPK input with SCK key (key
location 0x81) and store it at key location 0

idx<<8 | 0x03 20ff0001 + idx<<24 Decrypt key input with CWPK key at index 0
and store it at key location 20+idx
(descrambling keys)

0x10 03ff0001 Decrypt key input with CWPK key at index 0
and store it at key location 3

0x11 04000001 Decrypt CWPK key at index 0 with itself and
store it at key location 4

TKD 0x05 Get public ID

0x01 01ff8101 Decrypt CWPK input with SCK key (key
location 0x81) and store it at key location 1

0x02 00ff8101 Decrypt CWPK input with SCK key (key
location 0x81) and store it at key location 0

idx<<8 | 0x04 10ff0101 + idx<<24 Decrypt key input with CWPK key at index 1
and store it at key location 10+idx (crypto
DMA / AES keys)

idx<<8 | 0x80 10ff8001 + idx<<24 Decrypt key input with key at location 0x80
and store it at key location 10+idx (crypto
DMA / AES keys)

UNKNOWN 0x10 03ff0001 Decrypt key input with CWPK key at index 0
and store it at key location 3

idx<<8 | 0x03 20ff0001 + idx<<24 Decrypt key input with CWPK key at index 0
and store it at key location 20+idx
(descrambling keys)

NONCE 0x11 04000001 Decrypt CWPK key at index 0 with itself and
store it at key location 4 (NONCE)

0x12 ffff0401 Decrypt key input with key at index 4
(NONCE)

SWREGS 0x20 02ff8101 Decrypt key input with SCK key (key
location 0x81) and store it at key location 2

0x21 80ff0203 ??

0x22 81ff0203 ??

0x23 82ff0203 ??

0x24 83ff0203 ??

Table 4 STK commands groups and their description.

Core routines related to CWPK and CWs handling

Below, a more detailed description pertaining to keys handling related functionality implemented by

the SlimCORE firmware is presented. This functionality is implemented by TKD commands handling

thread.

Key initialization routine

Key initialization subroutine is called at the time of a firmware startup. At first, customer mode is
checked for bit 0x40. If this bit is set, no keys are being initialized:

########################

SUB l_04e1

init keys

########################

l_04e1 0x000c0d3c mov r12,r13

 04e2 0x00a7000c ld r7,[r0,000c] // ;customer mode

 04e3 0x00407040 tst r7,40

 04e4 0x009c14fc jne,s l_04fc ;-> jump to the end

In the next step, register r9 is set to the value 0 to indicate TDES cipher algorithm (a default cipher).
If bit 0x02 of customer mode variable is set, the default cipher is changed to the value 1 (AES
algorithm):

 04e5 0x0009003c mov r9,r0 ;r9 = 0 (TDES)

 04e6 0x00e10001 mov r1,#0001

 04e7 0x00407002 tst r7,02

 04e8 0x008814ea jz l_04ea

 04e9 0x0009013c mov r9,r1 ;r9 = 1 (AES)

Following that, Control Words Pairing Key (CWPK) is initialized. This is accomplished by invoking a
single crypto key initialization subroutine (location 04fd) with register r8 indicating TKD Crypto core
command to execute and r9 denoting the cipher. For CWPK key the TKD command is set to
0x00ff8101 value:

l_04ea 0x00a8001c ld r8,[r0,001c] // 0x4070 = 0x00ff8101 ;setCWPK

 04eb 0x00ed04ed mov r13,#04ed ;sub ret addr

 04ec 0x008c04fd j l_04fd ;init single key

Next, customer mode is checked for bit value 0x20. If this bit is set, additional (pairing?) key
initialization takes place with the use of a 0x03ff0001 TKD command:

 04ed 0x00407020 tst r7,20

 04ee 0x008814f2 jz l_04f2

 04ef 0x00a80022 ld r8,[r0,0022] // 0x4088 = 0x03ff0001 ;TKD CMD

 04f0 0x00ed04f2 mov r13,#04f2

 04f1 0x008c04fd j l_04fd

Finally, all descrambling (Control Words) keys are initialized in a loop:

l_04f2 0x00e60032 mov r6,#0032 ;number of CWs

 04f3 0x00e50020 mov r5,#0020 ;base for TKD cmd

l_04f4 0x00a8001d ld r8,[r0,001d] // 0x4074 = 0x20ff0001

 04f5 0x00785118 mov r8,r5&0xff<<24 ;set highest byte

 ;in TKD cmd

 04f6 0x00ed04f8 mov r13,#04f8 ;sub return addr

 04f7 0x008c04fd j l_04fd ;init single key

 04f8 0x00255001 add r5,r5,r0,#0001 ;inc key idx

 ...

 04fa 0x00366001 sub r6,r6,r0,#0001 ;dec loop counter

 04fb 0x008c14f4 jne l_04f4 ;-> loop jump if

 ; counter not 0

The loop above initializes 0x32 descrambling keys (CWs).

Initialization of a single crypto key is implemented by the following subroutine:

########################

SUB l_04fd

initialization of a single crypto key

INPUT: r9 = 1 for AES, = 0 for TDES

 r8 = TKD command

########################

l_04fd 0x00409900 tst r9,00 ;AES ?

 04fe 0x008c1506 jne l_0506 ;-> jump for AES

 04ff 0x00fa4000 copTDES ;handle TDES

 0500 0x000f083c mov r15,r8 ;TKD CMD -> OUT

 0501 0x008e1501 wait1

 0502 0x00d00004 rpt 4

 0503 0x000f003c mov r15,r0 ;rpt 4 r0 -> OUT

 0504 0x008e1504 wait1

 0505 0x008c050c j l_050c

l_0506 0x00f54000 copAES ;handle AES

 0507 0x000f083c mov r15,r8 ;TKD CMD -> OUT

 0508 0x008d8508 wait2

 0509 0x00d00004 rpt 4

 050a 0x00af0000 ld r15,[r0,0000] // 0x4000 = 0x00000000 ;rpt 4 [0x4000] -> OUT

 050b 0x008d850b wait2

l_050c 0x00d00004 rpt 4 ;handle output result

 050d 0x00000f3c mov r0,r15 ;rpt 4 r0 < IN

 050e 0x00840d00 jmp r13

Initialization of a single crypto key is conducted in a similar way for both AES and TDES cipher. First, a

coprocessor instruction corresponding to an argument in register r9 is executed indicating target

crypto operation to perform. Then TKD command is sent to TKD core (OUT operation) through

register r15. For TDES, it is followed by 4 consecutive out operations of 0 value. For AES, the 4

consecutive out operations are conducted with respect to the contents of firmware location 0x4000.

The result of the key loading operation is always ignored (moved to r0).

getPublicID implementation

The getPublicID code has the following implementation:

l_01a1 0x00a5008b ld r5,[r0,008b] // 0x5e2c ;chip id

 01a2 0x00a9001f ld r9,[r0,001f] // 0x407c = 0x00000000 ;TKD CMD = 0

 01a3 0x00b05008 st r5,[r0,0008] // 0x4020 = 0x00000000 ;DATA[0] = chip id

 01a4 0x00b00009 st r0,[r0,0009] // 0x4024 = 0x00000000 ;DATA[4] = 0

 01a5 0x00b0000a st r0,[r0,000a] // 0x4028 = 0x00000000 ;DATA[8] = 0

 01a6 0x00b0000b st r0,[r0,000b] // 0x402c = 0x00000000 ;DATA[c] = 0

The hardware value indicating chip ID is stored into the first word of STK command arguments

buffer. It is followed by 3 consecutive store operations of 0 value.

decryptKey implementation

The decryptKey code sequence is responsible for loading encrypted crypto key values such as

CWPK and CWs into TKD Crypto core. The code for this functionality is implemented as part of STK

commands handling thread. Below, a more detailed description of TDES based implementation is

given:

l_0206 0x00fa4000 copTDES ;TDES handling

 0207 0x000f093c mov r15,r9 ;TKD CMD -> OUT

 0208 0x008e1208 wait1

In the beginning, the TKD core is configured to operate in TDES mode. Then TKD command is sent to

TKD core (OUT operation) through register r15. For descrambling key at index idx, the TKD command

has the value of:

 0x20ff0001+(idx<<24)

Finally, the encrypted key value contained in STK cmd buffer is sent to the TKD core.

 0209 0x00af0008 ld r15,[r0,0008] // 0x4020 ;DATA[0] -> OUT

 020a 0x00af0009 ld r15,[r0,0009] // 0x4024 ;DATA[4] -> OUT

 020b 0x00af000a ld r15,[r0,000a] // 0x4028 ;DATA[8] -> OUT

 020c 0x00af000b ld r15,[r0,000b] // 0x402c ;DATA[c] -> OUT

 020d 0x008e120d wait1

Next, register r10 indicating whether current TKD command has output is checked:

 020e 0x00500a00 tst r10,r10 ;does this command have output ?

 020f 0x00881215 jz l_0215 ;-> jump in case of no output

If a command has output, it is simply read via register r15 and stored into STK cmd buffer (IN

operation):

 0210 0x00b0f008 st r15,[r0,0008] // 0x4020 ;DATA[0] <- IN

 0211 0x00b0f009 st r15,[r0,0009] // 0x4024 ;DATA[4] <- IN

 0212 0x00b0f00a st r15,[r0,000a] // 0x4028 ;DATA[8] <- IN

 0213 0x00b0f00b st r15,[r0,000b] // 0x402c ;DATA[c] <- IN

 0214 0x00d02117 jmp l_0217

If register r10 indicates no output, the result of a key loading operation is always ignored (moved to

r0):

l_0215 0x00d00004 rpt 4 ;read output buffer, but ignore it

 0216 0x00000f3c mov r0,r15 ;r0 <- IN

For AES cipher, the sequence of instructions implementing decryptKey functionality is similar to

the one of TDES cipher. There is however one difference. Following the OUT operation of a TKD

command, there is a check for bit 0x08 of a firmware variable at 0x41c0 location:

 01ed 0x00a30070 ld r3,[r0,0070] // 0x41c0 = 0x00000070

 01ee 0x008d81ee wait2

 01ef 0x00703c23 tst r3,#00000008

 01f0 0x008811f6 jz l_01f6

If this bit is set, instead of sending user provided (from STK cmd buffer location) arguments to the

chip, data from some I/O locations is used for that purpose:

 01f1 0x00af0090 ld r15,[r0,0090] // 0x5e40 ;[0x5e40] -> OUT

 01f2 0x00af0091 ld r15,[r0,0091] // 0x5e44 ;[0x5e44] -> OUT

 01f3 0x00af0092 ld r15,[r0,0092] // 0x5e48 ;[0x5e48] -> OUT

 01f4 0x00af0093 ld r15,[r0,0093] // 0x5e4c ;[0x5e4c] -> OUT

setCWPK implementation

The implementation of setCWPK makes use of the described above decryptKey functionality.

For setCWPK, target TKD command is set to the value of 0x00ff8101.

In Conax CAS environment, the value of CWPK key is passed to a set-top-box device by the means of

a dedicated EMM message. We have observed that smartcard's response to it always starts with the

same sequence of 6 bytes:

 80 1b 40 19 01 17

The response to EMM message contains a TLV value and UPDATE_KEY tag in particular. The latter

embeds pairing information in a form of a public chip ID and an encrypted CWPK key. This is

illustrated on Fig. 16.

Fig. 16 A response to Conax CAS EMM message carrying chipset pairing information.

ADB set-top-boxes additionally encrypt the received encrypted pairing key and store it in a local

file14. This is most likely for the purpose of a quick STB startup (no need to wait for a reception of a

pairing key over the broadcast stream).

The additional encryption of CWPK should not be perceived in terms of a security mechanism

though. This is primarily due to the following:

 the EMM message containing CWPK key seems to be continuously broadcasted and it can be

easily detected upon smartcard's response pattern,

 in the environment of ADB set-top-boxes, the cpm_SecGetDecryptedKeyPtr function

of libstd_cai_client_conax7.so library can be successfully used to obtain the

original CWPK key.

Crypto DMA handling

While our reverse engineering efforts were primarily focused on SlimCORE firmware and its handling

of CWPK and CW keys, some initial analysis of Crypto DMA functionality has been also conducted.

As a result of this analysis, the following code sequences were discovered as being likely primarily

responsible for crypto DMA transfer implementation (standard DMA case):

1. Initialization of IV vector:

l_02c7 0x00a10001 ld r1,[r0,0001] // 0x4004 ;DMA CONFIG

 02c8 0x00711c2c bitval r1,r1,#00001000 ;IV init ?

 02c9 0x008812cf jz l_02cf ;-> jump if no need to init IV

 02ca 0x00b0deff st r13,[r14,00ff] ;temporary store r13

 02cb 0x003ee001 sub r14,r14,r0,#0001

 02cc 0x00ed02ce mov r13,#02ce ;subroutine return addr

 02cd 0x008c04bb j l_04bb ;initialization of IV ?

 02ce 0x00ad1e01 ld r13,[r14,0001] // 0x0004 ;restore saved r13

14

 /mnt/flash/secure/7/0 file.

The above sequence checks 0x1000 bit flag of a DMA CONFIG variable to see whether initialization

vector15 IV was provided at the time of a DMA setup operation. If it exists, a call to 04bb subroutine

is made where IV gets initialized.

The called subroutine first checks whether target DMA channel in TKD DMA command is within the

allowed range:

l_04bb 0x00a1002e ld r1,[r0,002e] // 0x40b8 ;TKD CMD

 04bc 0x00d00090 sync

 04bd 0x00721d08 shr r2,r1,0x08 ;DMA channel id+0x10

 04be 0x00302010 sub r0,r2,r0,#0010 ;DMA channel id

 04bf 0x009844e0 jb l_04e0 ;-> jump to the end if < 0x10

 04c0 0x00302018 sub r0,r2,r0,#0018

 04c1 0x009c44e0 jae l_04e0 ;-> jump to the end if >= 0x18

For IV init, only channels 0 and 7 seem to be used:

 04c2 0x00222001 add r2,r2,r0,#0001 ;r2 = in the range of 0x11 do 0x18

 04c3 0x00302017 sub r0,r2,r0,#0017

 04c4 0x008874c7 jz l_04c7 ;-> jump if r2 == 0x17

 04c5 0x00e20010 mov r2,#0010

 04c6 0x00d00090 sync

One of these channels is set in a target TKD DMA command. Additionally, its IV bit is cleared to

indicate that IV has been configured and algorithm mode is set to ECB:

l_04c7 0x00712108 mov r1,r2&0xff<<8

 04c8 0x00710026 bitset r1,r0&0x01<<6 ;clear bit 0x40 (IV seed?)

 04c9 0x00710041 mov r1,r0&0x03<<1 ;clear bits xxxxx00x TKD CMD

Later on a check is made to see whether the IV is for AES or TDES algorithm and the actual

initialization takes place:

 04ca 0x00500300 tst r3,r3 ;AES ?

 04cb 0x009814d6 je l_04d6 ;-> jump for TDES

 04cc 0x009d84cc wait4 ;AES handling

 04cd 0x00f54000 copAES

 04ce 0x00d00090 sync

 04cf 0x000f013c mov r15,r1 ;TKD CMD -> OUT

 04d0 0x00d00004 rpt 4

 04d1 0x000f003c mov r15,r0 ;rpt 4 r0 -> OUT

 04d2 0x008d84d2 wait2

 04d3 0x00d00004 rpt 4

 04d4 0x00000f3c mov r0,r15 ;rpt 4 r0 <- IN

 04d5 0x008c04e0 j l_04e0 ;-> jump to the end

The IV initialization implementation is a little bit confusing. It seems to be initializing the IV with the

use of a target cipher (AES or TDES), but the actual value used for the IV is always 0. It could be that

the IV seed in DMA CONFIG indicates that a default zero vector for the IV should be used.

2. Configuration of source and target addresses for crypto DMA transfer:

l_02e4 0x00f10000 UNK ;unknown coprocessor

 instruction

15

 required for the CBC cipher mode of AES algorithm operation.

 02e5 0x00af0032 ld r15,[r0,0032] // 0x40c8 ;0x3051 or 0x1051 DMA src

 config cmd -> OUT

 02e6 0x002fb000 add r15,r11,r0,#0000 ;DMA src

 02e7 0x002bb020 add r11,r11,r0,#0020 ;DMA src+=0x20

 02e8 0x00366008 sub r6,r6,r0,#0008

 02e9 0x00af0031 ld r15,[r0,0031] // 0x40c4 ;0x4052 or 0x6052 DMA dst

 config cmd -> OUT

 02ea 0x000f0a3c mov r15,r10 ;DMA dst

 02eb 0x009d82eb wait4

The above sequence initializes source and destination addresses for DMA transfer. The transfer is

conducted by the means of 0x20 bytes at a time (eight 32-bit words).

There are different TKD DMA configuration commands depending on whether they pertain to the

source and destination address as well as the actual cipher operation (encryption vs. decryption).

This is illustrated in Table 5.

TKD DMA COMMAND MEMORY ADDRESS OPERATION

0x3051 DMA source Encryption

0x1051 DMA source Decryption

0x4052 DMA destination Encryption

0x6052 DMA destination Decryption

Table 5 TKD DMA configuration commands.

3. Actual DMA transfer:

 02f1 0x00f44000 copAES_dma

 02f2 0x00af002e ld r15,[r0,002e] // 0x40b8 ;TKD CMD -> OUT

 02f3 0x00d00004 rpt 4

 02f4 0x000f0f3c mov r15,r15 ;do the DMA transfer

 02f5 0x002aa020 add r10,r10,r0,#0020 ;DMA dst+=0x20

 02f6 0x00399008 sub r9,r9,r0,#0008 ;decrease number of dwords by 8

 02f7 0x009d82f7 wait4

The above sequence seems to be configuring the target crypto algorithm for the DMA transfer

(copAES_dma instuction). Then, it issues TKD DMA command (Fig. 13 and Fig. 14) to the TKD core.

Finally, the transfer is performed by the means of a mov r15,r15 instruction within the repeat

loop.

It should be noted, that for TDES crypto algorithm, the configuration takes place with the use if the

following instruction:

 0x00f84000 copTDES_dma

There are many other peculiarities pertaining to the crypto DMA implementation such as the use of

0x00f00000 and 0x00f20000 coprocessor instruction, swapping bytes and decryptContainer

implementation in particular. As this functionality didn't seem to be relevant from a point of view of

CWPK and CW handling, it hasn't been analyzed / reversed engineered further (only basic

understanding of TKD DMA implementation was acquired).

Original reverse engineering annotations

Upon successful reverse engineering of a SlimCORE processor instruction format and a disassembly

dump of TKD firmware code, we conducted an analysis of its operation. This analysis was performed

in the context of the information acquired by the means of both static16 and dynamic17 analysis of

the firmware's code. Along the analysis process, firmware code corresponding to STTKDMA-

REL_3.1.6 was being annotated with comments and description of the instructions' operation.

These original annotations are available as part of SRP-2018-01 project. The annotation file has the

following format:

!/*## (c) SECURITY EXPLORATIONS 2011 poland #*/

!/*## http://www.security-explorations.com #*/

!

!/* RESEARCH MATERIAL: SRP-2018-01

*/

!/* Reverse engineering annotations */

!/* SlimCORE firmware ver : STTKDMA-REL_3.1.6 */

!/* code size: 5852 (0x16dc) */

!/* sha-1 : afe518789d1b0b1d3c0f8efd2704ac84a69140ed */

!

!/* THIS SOFTWARE IS PROTECTED BY DOMESTIC AND INTERNATIONAL COPYRIGHT LAWS */

!/* UNAUTHORISED COPYING OF THIS SOFTWARE IN EITHER SOURCE OR BINARY FORM IS */

!/* EXPRESSLY FORBIDDEN. ANY USE, INCLUDING THE REPRODUCTION, MODIFICATION, */

!/* DISTRIBUTION, TRANSMISSION, RE-PUBLICATION, STORAGE OR DISPLAY OF ANY */

!/* PART OF THE SOFTWARE, FOR COMMERCIAL OR ANY OTHER PURPOSES REQUIRES A */

!/* VALID LICENSE FROM THE COPYRIGHT HOLDER. */

!

!/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS */

!/* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,*/

!/* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL */

!/* SECURITY EXPLORATIONS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, */

!/* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF */

!/* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE */

!/* SOFTWARE. */

0 ########################

0 DISPATCH idx 0x04 -> 0x2000000 (init code)

0 ########################

b ;counter = 0

c ;memory idx of 0x4040 addr

f ;store 0 to [0x4040-0x4060]

10 ;chip customer mode

12 ;low nibble of chip customer mode

14 ;-> chip customer mode == 0x05

16 ;-> chip customer mode == 0x02

18 ;-> chip customer mode == 0x06

1a ;-> chip customer mode == 0x0b

1c ;-> chip customer mode == 0x0f

1e ;-> chip customer mode == 0x03

...

Each line starts with a hexadecimal number indicating the instruction at a given code location. It is

followed by a space separator and one of the following:

16

 static analysis of firmware code, STTKDMA device driver files and user level libraries.
17

 dynamic analysis conducted with the help of a SlimCORE tracer tool.

 a "!" character indicates a comment in the annotations file itself and it is ignored,

 a ";" character indicates a comment following a given instruction,

 any other character indicates a comment proceeding a given instruction.

The annotation can be applied to a target disassembly dump18 with the use of our SCDisasm tool.

The results of doing this is presented below:

 0009 0x00b04084 st r4,[r0,0084] // 0x5e10

 000a 0x00b03085 st r3,[r0,0085] // 0x5e14

 000b 0x00b0002c st r0,[r0,002c] // 0x40b0 ;counter = 0

 000c 0x00e60010 mov r6,#0010 ;memory idx of 0x4040 addr

 000d 0x00d00090 sync

 000e 0x00d00009 rpt 9

 000f 0x00b10601 st r0,[r6],r6+=#0001 ;store 0 to [0x4040-0x4060]

 0010 0x00a5008a ld r5,[r0,008a] // 0x5e28 ;chip customer mode

 0011 0x00e40040 mov r4,#0040

 0012 0x00735c80 and r3,r5,0x0f ;low nibble of chip customer mode

 0013 0x00c03005 cmp r3,#05

 0014 0x00981026 je l_0026 ;-> chip customer mode == 0x05

 0015 0x00c03002 cmp r3,#02

 0016 0x00981028 je l_0028 ;-> chip customer mode == 0x02

 0017 0x00c03006 cmp r3,#06

 0018 0x0098102a je l_002a ;-> chip customer mode == 0x06

 0019 0x00c0300b cmp r3,#0b

 001a 0x0098102c je l_002c ;-> chip customer mode == 0x0b

 001b 0x00c0300f cmp r3,#0f

 001c 0x0098102e je l_002e ;-> chip customer mode == 0x0f

 001d 0x00c03003 cmp r3,#03

 001e 0x00981030 je l_0030 ;-> chip customer mode == 0x03

Recent firmware changes

Over the years, the SlimCORE firmware for STi7111 SoC has not changed much. There are not many

differences between firmware version 3.1.6 and 3.5.0. The functionality and implementation of both

firmwares is almost identical (the offsets for all main subroutines differ only by a few bytes).

The biggest changed was observed in the most recent firmware version available in ITI-2849ST and

ITI-2850ST set-top-boxes (

Table 6).

FIRMWARE VERSION DATE CODE SIZE INSTRUCTION COUNT DIFFERENCE VS. 3.1.6

STTKDMA-REL_3.1.6 2010 5852 0x05b7 Same

STTKDMA-REL_3.5.0 2011 5944 0x05ce +23 instructions

STTKDMA-REL_3.9.2 2015 6324 0x062c +117 instructions

Table 6 SlimCORE firmware versions and their differences.

More specifically, the code of the latest firmware is bigger by 117 instructions than the previous one.

This is primarily due to the addition of the following code:

 TKD commands obfuscation subroutine (15 instructions),

 multiple invocations of TKD commands obfuscation subroutine (13 locations with 3

instructions each),

18

 corresponding to the firmware version for which it was suited for.

 modified implementation of the main TKD commands execution subroutine such as

decryptKey (prolog and epilog subroutines, with 15 and 17 instructions respectively),

 implementation of 3 new commands (40+ instructions19).

These are the only differences observed - the core functionality related to key management and

crypto DMA is implemented in a similar way as for old firmwares. Below, a more detailed

description pertaining to the new code is given.

TKD commands obfuscation

New firmware does not store TKD commands in data memory in plaintext form. They are obfuscated

instead and need to be processed before being sent to TKD crypto core.

Below, an code sequence handling setCWPK key command (STK cmd 0x02) is shown:

 01cc 0x00c05002 cmp r5,#02

 01cd 0x00981209 je l_0209 ;-> jump for STK CMD == 0x02

 ...

l_0209 0x00a10018 ld r1,[r0,0018] // 0x4060 = 0xa3cedbeb

 020a 0x00ed020c mov r13,#020c ;subroutine return addr

 020b 0x008c0059 j l_0059 ;call deobfuscation subroutine

 020c 0x0009013c mov r9,r1 ;move real (deobfuscated) TKD

 ;command value to r9

The code above loads an obfuscated TKD command value (0xa3cedbeb) to register r1 and invokes

a deobfuscation subroutine at 0x0059 location. The result value (real TKD command value

0x00ff8101) is returned in register r1.

The implementation of TKD commands' deobfuscation subroutine is as follows:

l_0059 0x00b02eff st r2,[r14,00ff] ;save r2 on stack

 005a 0x00b03efe st r3,[r14,00fe] ;save r3 on stack

 005b 0x003ee002 sub r14,r14,r0,#0002 ;adjust stack pointer for tmp space

 005c 0x00721e03 mov r2,(r1>>3)&0xffff ;bits 3-18 of input cmd

 005d 0x00731db3 mov r3,(r1>>19)&0x1fff ;bits 19-31 of input cmd

 005e 0x00712210 movhi r1,r2<<16 ;bits 3-18 become bits 16-31

 005f 0x007131a3 mov r1,r3&0x1fff<<3 ;bits 19-31 become bits 3-15

 0060 0x00e2db82 mov r2,#db82

 0061 0x00e322ca mov r3,#22ca

 0062 0x00d00090 sync

 0063 0x00732210 movhi r3,r2<<16 ;=0xdb8222ca (fixed constant)

 0064 0x00611300 xor r1,r1,r3 ;perform deobfuscation through xor

 0065 0x00a31e01 ld r3,[r14,0001] ;restore r3

 0066 0x00a21e01 ld r2,[r14,0001] ;restore r2

 0067 0x00840d00 jmp r13 ;return from subroutine

The deobfuscation process is very simple - it involves arbitrary bits shifting and an exclusive or (xor)

operation with a constant value (Fig. 17).

19

 the total of new instructions exceeds 117, but this is compensated by the compression of some other code
parts such as the one related to chip customer mode handling and STK commands' state maintenance in
particular.

Fig. 17 Deobfuscation of TKD commands.

The following Java code can be used to successfully deobfuscate arbitrary TKD command value from

new STi7111 firmware:

 public static int deobfuscate(int v) {

 int v1=(v>>3)&0xffff;

 int v2=(((v>>19)&0x1fff)<<3)|((v&0x07)&0xffff);

 int vv=(v1<<16)|v2;

 int res=vv^0xdb8222ca;

 return res;

 }

Prolog and epilog routines

For certain TKD commands, additional prolog and epilog functions are executed by the new

firmware. This in particular includes, but is not limited to core routines related to CWPK and CWs

handling.

The following prolog code is used prior to the execution of TKD commands:

l_036a 0x00b04eff st r4,[r14,00ff] ;save r4

 036b 0x00b05efe st r5,[r14,00fe] ;save r5

 036c 0x003ee002 sub r14,r14,r0,#0002 ;adjust stack for tmp space

 036d 0x00e44042 mov r4,#4042

 036e 0x00e50030 mov r5,#0030

 036f 0x00745210 movhi r4,r5<<16 ;=0x00304042 (TKD CMD)

 0370 0x00a50043 ld r5,[r0,0043] // 0x410c = 0xfe248000

 0371 0x00f00000 UNK ;unknown coprocessor

 instruction

 0372 0x000f043c mov r15,r4 ;TKD CMD -> OUT

 0373 0x002f5010 add r15,r5,r0,#0010 ;0xfe248010 addr -> OUT

 0374 0x00d00004 rpt 4

 0375 0x000f003c mov r15,r0 ;rpt 4 r0 -> OUT

 0376 0x00a51e01 ld r5,[r14,0001] // 0x0004 ;restore r5

 0377 0x00a41e01 ld r4,[r14,0001] // 0x0004 ;restore r4

 0378 0x00840d00 jmp r13 ;return from subroutine

The code above seems to initialize several internal registers20 of a SlimCORE processor with zero

values. This is accomplished by the means of a TKD command configuring destination address of a

TKD operation in a similar way to DMA transfer. In this particular case, the 0x00304042 is however

used instead of the usual 0x4052 DMA destination addr configuration command (Table 5).

The epilog code invoked after the execution of arbitrary TKD commands is very similar to the prolog

one:

l_0379 0x00f00000 UNK ;unknown coprocessor

 instruction

 037a 0x00b01eff st r1,[r14,00ff] ;save re

 037b 0x003ee001 sub r14,r14,r0,#0001 ;adjust stack for tmp space

 037c 0x00a10043 ld r1,[r0,0043] // 0x410c = 0xfe248000

 037d 0x00ef4042 mov r15,#4042 ;TKD CMD -> OUT

 037e 0x002f1010 add r15,r1,r0,#0010 ;0xfe248010 addr -> OUT

 037f 0x00d00004 rpt 4

 0380 0x000f003c mov r15,r0 ;rpt 4 r0 -> OUT

 0381 0x00a11e01 ld r1,[r14,0001] // 0x0004 ;restore r1

 0382 0x00840d00 jmp r13 ;return from subroutine

There is however a difference in TKD CMD used (0x4042) to configure the destination address.

New commands

New firmware implements 3 new STK commands. These are briefly described below.

STK command 0x43

This command seems to directly initialize a key slot from a descrambling keys' memory location

(offset 0x3100) with given input values.

First, target memory address corresponding to descrambling key index indicated by register r4 is

computed and stored in same register:

l_026d 0x00a30043 ld r3,[r0,0043] // 0x410c ;= 0xfe248000 (base addr)

 026e 0x00e53100 mov r5,#3100 ;descrambling keys offset

 026f 0x00d00090 sync

 0270 0x00233500 add r3,r3,r5,#0000 ;descrambling keys addr

 0271 0x000c003c mov r12,r0 ;=0

 0272 0x008c0276 j l_0276

 ...

l_0276 0x00144004 shl r4,r4,#0004 ;key idx<<4

 0277 0x00244300 add r4,r4,r3,#0000 ;addr for a descrambler key

After that, source memory address from where key data is to be obtained is also computed:

l_0278 0x00a50008 ld r5,[r0,0008] // 0x4020 ; DATA[0] - src idx
 0279 0x00e30120 mov r3,#0120 ; memory idx of 0x4480 addr
 027a 0x00155002 shl r5,r5,#0002 ;src idx<<2

 027b 0x00233500 add r3,r3,r5,#0000 ;src addr

 027c 0x0040c001 tst r12,01

 027d 0x00881284 jz l_0284 ;-> jump for STK cmd == 0x43

20

 SlimCORE processor space is mapped at base address 0xfe24800 of the host operating system. According
to [7], internal processor registers occupy the beginning of this address space.

Finally, key data from source memory location is moved into the target descrambling memory slot:

l_0284 0x00f00000 UNK ;unknown coprocessor

 instruction

 0285 0x00d00090 sync

 0286 0x00d00090 sync

 0287 0x00af0044 ld r15,[r0,0044] // 0x4110 ;= 0x23104022 (TKD CMD) -> OUT

 0288 0x000f043c mov r15,r4 ;addr for a descrambler key

 0289 0x00af0300 ld r15,[r3,0000] // 0x0000 ;src data[0] -> OUT

 028a 0x00af0301 ld r15,[r3,0001] // 0x0004 ;src data[4] -> OUT

 028b 0x00af0302 ld r15,[r3,0002] // 0x0008 ;src data[8] -> OUT

 028c 0x00af0303 ld r15,[r3,0003] // 0x000c ;src data[c] -> OUT

Following that, a dummy delay loop is executed:

 028d 0x00ec0064 mov r12,#0064 ;loop counter = 100

l_028e 0x003cc001 sub r12,r12,r0,#0001 ;decrease counter

 028f 0x008c128e jne l_028e ;-> loop jump if counter != 0

From the above implementation, we conclude that STK command 0x43 makes it possible to set a

given descrambling key directly in descramblers' key memory.

STK command 0x44

STK command 0x44 starts with an initialization of register r4 with a key index provided as part of STK

command itself (byte 1 denoting 0x44+idx<<8 value):

l_0273 0x0004033c mov r4,r3 ;key idx

 0274 0x00ec0001 mov r12,#0001 ;indicate STK command 0x44

 0275 0x008c0278 j l_0278

Following that, similarly to STK command 0x43, the source memory address is computed from where

key data for a given source key index is to be obtained:

l_0278 0x00a50008 ld r5,[r0,0008] // 0x4020 ; DATA[0] - src idx
 0279 0x00e30120 mov r3,#0120 ; memory idx of 0x4480 addr
 027a 0x00155002 shl r5,r5,#0002 ;src idx<<2

 027b 0x00233500 add r3,r3,r5,#0000 ;src addr

 027c 0x0040c001 tst r12,01

 027d 0x00881284 jz l_0284 ;-> jump for STK cmd == 0x43

The difference is that the jump at location 0x027d is not taken (r12 is set to 1) and consecutive

instructions get executed. These instruction modify the key index value to be in the range 0-7

(modulo 8) and transfer key data from a computed source location to registers:

 027e 0x00444007 and r4,r4,#0007 ;key idx modulo 8

 027f 0x00a50301 ld r5,[r3,0001] // 0x0004 ;src data[4]

 0280 0x00a90302 ld r9,[r3,0002] // 0x0008 ;src data[8]

 0281 0x00ac0303 ld r12,[r3,0003] // 0x000c ;src data[c]

 0282 0x00a30300 ld r3,[r3,0000] // 0x0000 ;src data[0]

 0283 0x008c0296 j l_0296

Following that, a jump to prolog routine is made:

l_0296 0x00ed0298 mov r13,#0298 ;subroutine return addr

 0297 0x008c036a j l_036a ;invoke prolog subroutine

Later on, two similar sequences corresponding to two TKD core operations are executed one after

another.

 OPERATION 1

The TKD core is put into AES mode and TKD command 0x324923eb gets deobfuscated. As a result,

cleartext TKD command ffff1081 is obtained in register r1:

 0298 0x00f54000 copAES

 0299 0x00a10028 ld r1,[r0,0028] // 0x40a0 ;= 0x324923eb (obfuscated TKD

 command)

 029a 0x00b0deff st r13,[r14,00ff] ;save r13

 029b 0x003ee001 sub r14,r14,r0,#0001 ;adjust stack for tmp space

 029c 0x00ed029e mov r13,#029e ;subroutine return addr

 029d 0x008c0059 j l_0059 ;invoke deobfuscation sub

 029e 0x00ad1e01 ld r13,[r14,0001] // 0x0004 ;restore r13

Selected bits of TKD command 0xffff1081 are further modified. As a result, TKD command

0xffff8000 is produced:

 029f 0x00e80080 mov r8,#0080 ;=0x80

 02a0 0x00710020 bitset r1,r0&0x01<<0 ;=0xffff1080 (bit 0 cleared)

 02a1 0x00718108 mov r1,r8&0xff<<8 ;=0xffff8080 (bit 15 set)

 02a2 0x00710027 bitset r1,r0&0x01<<7 ;=0xffff8000 (bit 7 cleared)

This command along arguments data contained in registers are sent to the TKD Crypto core (OUT

operation):

 02a3 0x000f013c mov r15,r1 ;0xffff8000 (TKD CMD) -> OUT

 02a4 0x008d82a4 wait2

 02a5 0x000f033c mov r15,r3 ;r3 -> OUT

 02a6 0x000f053c mov r15,r5 ;r5 -> OUT

 02a7 0x000f093c mov r15,r9 ;r9 -> OUT

 02a8 0x000f0c3c mov r15,r12 ;r12 -> OUT

 02a9 0x008d82a9 wait2

The result of the operation is read from TKD Crypto core (IN operation) and stored back to registers:

 02aa 0x00030f3c mov r3,r15 ;r3 <- IN

 02ab 0x00050f3c mov r5,r15 ;r5 <- IN

 02ac 0x00090f3c mov r9,r15 ;r9 <- IN

 02ad 0x000c0f3c mov r12,r15 ;r12 <- IN

 OPERATION 2

The TKD core is again put into AES mode and TKD command 0x23ce5beb gets deobfuscated. As a

result, cleartext TKD command 10ff0101 is obtained in register r1:

 02ae 0x00f54000 copAES

 02af 0x00a1001a ld r1,[r0,001a] // 0x4068 ;= 0x23ce5beb (obfuscated TKD

 command)

 02b0 0x00b0deff st r13,[r14,00ff] ;save r13

 02b1 0x003ee001 sub r14,r14,r0,#0001 ;adjust stack for tmp space

 02b2 0x00ed02b4 mov r13,#02b4 ;subroutine return addr

 02b3 0x008c0059 j l_0059 ;invoke deobfuscarion sub

 02b4 0x00ad1e01 ld r13,[r14,0001] // 0x0004 ;restore r13

Selected bits of TKD command 10ff0101 are further modified. As a result, TKD command

0x10ff8101|(idx<<24) is produced in register r1:

 02b5 0x00e80080 mov r8,#0080 ;=0x80

 02b6 0x00714098 mov r1,r4&0x0f<<24 ;set key idx in highest byte

 02b7 0x00718108 mov r1,r8&0xff<<8 ;=0x10ff8101 (bit 15 set)

This command along arguments data contained in registers are sent to the TKD Crypto core (OUT

operation):

 02b8 0x00d00090 sync

 02b9 0x000f013c mov r15,r1 ;TKD CMD -> OUT

 02ba 0x008d82ba wait2

 02bb 0x000f033c mov r15,r3 ;r3 -> OUT

 02bc 0x000f053c mov r15,r5 ;r5 -> OUT

 02bd 0x000f093c mov r15,r9 ;r9 -> OUT

 02be 0x000f0c3c mov r15,r12 ;r12 -> OUT

 02bf 0x008d82bf wait2

The result of the operation is read from TKD Crypto core (IN operation), but it is ignored:

 02c0 0x00d00004 rpt 4

 02c1 0x00000f3c mov r0,r15 ;rpt 4 r0 <- IN

A summary of both operations implemented by STK command 0x44 is presented in Table 7.

OPERATION TKD COMMAND DESCRIPTION

OP1
(Calc pairing key)

0xffff8000 Encrypt input with SCK key (key location 0x8021)
and make it available as the output

OP2
(Calc crypto DMA key
with the use of a
pairing key)

0x10ff8101|(idx<<24) Decrypt input with SCK key (key location 0x81)
and store it at key location 10+idx (crypto DMA
/ AES keys)

Table 7 Summary of operations implemented by STK command 0x44.

At the end of STK command 0x44 implementation, an epilog subroutine is invoked:

 02c2 0x00ed02c4 mov r13,#02c4 ;subroutine return addr

 02c3 0x008c0379 j l_0379 ;invoke epilog subroutine

From the above implementation, we conclude that STK command 0x44 serves as either:

 a debug command making it possible to test encryption and decryption of operations of a

arbitrary pairing key (if keys at locations 0x80 and 0x81 are the same),

 an implementation of a pairing functionality making use of two SCK keys (if keys at locations

0x80 and 0x81 are different).

STK command 0x48

21

 during our tests, commands ffff8001 and ffff8101 produced same results, thus we associate key
locations ox80 and 0x81 with same SCK key.

Implementation of STK command 0x48 is similar to command 0x44. The only difference is in the

source for the input key data. For STK command 0x48, the input key comes from STK command

buffer, not the 0x4480 based memory area:

l_0291 0x0004033c mov r4,r3 ;key idx

 0292 0x00a30008 ld r3,[r0,0008] // 0x4020 ;DATA[0]

 0293 0x00a50009 ld r5,[r0,0009] // 0x4024 ;DATA[4]

 0294 0x00a9000a ld r9,[r0,000a] // 0x4028 ;DATA[4]

 0295 0x00ac000b ld r12,[r0,000b] // 0x402c ;DATA[4]

The processing of the input data is further handled from code location 0x0296 (shared code path for

both 0x44 and 0x48 STK commands).

Potential vulnerabilities and further research

While analysis of STi7111 SlimCORE firmware and TKD operation has lead to the discovery of 2

security vulnerabilities in the SoC implementation, some other vulnerabilities could be still present in

the chip. Below, a brief description of several interesting candidates is given that in our opinion

deserve a deeper attention and verification as they could be the source of additional security

vulnerabilities of STi7111 SoC.

Privileged customer mode

STTKDMA-REL_3.1.6 firmware contains multiple checks of a customer mode variable. While

hardware customer mode does not seem to matter much (it is mapped to a corresponding SW

variable, which can be easily bypassed), the checks conducted indicate that some STK / TKD

commands could be more sensitive than others. More specifically, it is reasonable to assume that a

privileged / unique customer mode exists (such as the chipset vendor related one) that allows for

some security sensitive commands to be executed.

Table 8 illustrates customer mode values and corresponding STK commands (explicitly invalid or

valid).

CUSTOMER MODE STK COMMANDS

HW SW INVALID VALID

00, 01, 04,
09, 0a, 0d,
0e

40 0x00, 0x05, 0x02, 0x03, 0x40
0x01, 0x04

02 04 0x20, 0x21, 0x22, 0x23

03 10 0x80
0x20, 0x21, 0x22, 0x23

05 02 0x06
0x20, 0x21, 0x22, 0x23

06 05 0x20, 0x21, 0x22, 0x23

07 11 0x80
0x20, 0x21, 0x22, 0x23

08 20 0x01, 0x04 0x10, 0x11, 0x12
0x20, 0x21, 0x22, 0x23

0b 08 0x01, 0x04 0x80
0x20, 0x21, 0x22, 0x23

0c 21 0x01, 0x04 0x10, 0x11, 0x12
0x20, 0x21, 0x22, 0x23

0f 09 0x01, 0x04 0x80
0x20, 0x21, 0x22, 0x23

Table 8 Customer mode values and corresponding STK commands.

One can notice that for SW customer mode 0x02, STK command 0x06 is explicitly allowed. This

commands corresponds to the unusual bit combination for the least significant byte of an associated

TKD command (20ff0010 + idx<<24). It also targets descrambling keys memory (TKD cmd target is

0x20 based), which makes this command a natural candidate for a more thorough investigation.

Similarly, Table 9 shows some of the special modifications applied to TKD commands with respect to

the customer mode value. These modifications concern CWPK and CW keys handling commands in

particular, which again make them primary candidates for an in-depth investigation.

SW CUSTOMER MODE STK COMMAND OPTIONAL SPECIAL HANDLING

!=0x02 0x01 set xxxx82xx in TKD CMD

0x02 0x02 set bit 0x08 in TKD CMD

0x10, 0x08, 0x04 0x02 set xxxx82xx in TKD CMD

0x02 0x03 set bit 0x08 in TKD CMD

0x21 0x03 set xxxx03xx in TKD CMD
set bit 0x80 in TKD CMD

0x10, 0x11 0x03 set xxxx82xx in TKD CMD

0x08 0x03 set xxxx81xx in TKD CMD

0x10, 0x11, 0x04 0x04 set xxxx80xx in TKD CMD

!=0x10,!=0x11,!=0x04 0x04 set bit 0x80 in TKD CMD

Table 9 Customer mode value and special handling of STK commands.

Additionally, the changes introduced in SlimCORE firmware 3.9.2 still take customer mode into

account. For instance, the firmware makes sure that bit values 0x01 and 0x08 of HW customer mode

are always 0:

 000c 0x00a1008a ld r1,[r0,008a] // 0x5e28 ;HW customer mode

 000d 0x0045100b and r5,r1,#000b ;r5=bits 0, 1 and 3 of HW

 customer mode

 000e 0x00c05002 cmp r5,#02 ;is only bit 1 set ?

l_000f 0x009c100f jne,s l_000f ;endless loop if not

Privileged chip configuration state

TKD Crypto Core configuration state is primarily maintained in memory by the means of TK and DMA

CONFIG variables.

In this context, TK CONFIG seems to be in particular interesting as it could decide about whether the

chip is put into insecure / privileged state or not. For example, bit 1 of TK CONFIG variable implicates

setting of bit 0 at 0x5e30 I/O register location.

Additionally, bits 0, 5 and 7 of TK CONFIG variable directly influence the operation of a descrambler.

Crypto DMA for read / write kernel access

The environment of ITI-2840ST and ITI-2850ST set-top-boxes contain user level libraries that provide

support for STTKDMA device driver functionality related to DMA transfers. As Crypto DMA hasn't

been the focus of our research, it is still worth to verify whether kernel addresses can be used as

either source or destination of arbitrary DMA transfers. If so, such an implementation weakness

could be exploited to either modify kernel of the underlying OS22 or SlimCORE firmware.

Kernel modification is in particular interesting here as this would make it possible to conduct a

successful privilege elevation attack23 in a target OS.

Crypto DMA for chip registers / memory access

SlimCORE firmware 3.9.2 implicitly access memory area mapped by TKD Crypto core with the use of

Crypto DMA related TKD commands (0x10 from the SoC base).

In that context, crypto DMA could be potentially used to bypass SoC protections aimed at guarding

access to chipset's keys (descrambling keys at 0x3100 offset or internal locations corresponding to

CWPK key) or internal registers. The latter seems to be an interesting option to consider taking into

account the prolog and epilog functions introduced to firmware 3.9.2. These functions do only one

thing - overwrite chip locations likely mapped to internal SlimCORE processor registers as indicated

by the slim_core_map structure [7] (Fig. 18).

Fig. 18 Internal SlimCORE processor structure.

If this is the case, it could mean that these registers leak key data as part of computations

performed.

22

 some device drivers such as /dev/memdev of ITI-2849ST and ITI2850ST set-top-boxes opened access to
limited I/O space of a STi7111 chipset such as SlimCORE processor memory, a vulnerability in Crypto DMA
could be abused to gain access to whole kernel memory of the underlying OS.
23

 as a result of fixing the vulnerabilities discovered by Security Explorations the main MHP application is
currently executed as unprivileged user and with no capabilities on ADB set-top-boxes.

Arbitrary transfer from / to key memories would need to be accomplished by the means of a custom

SlimCORE processor code sequence executed from within the firmware code.

TKD commands for registers access

STK command 0x24 seems to be accessing some software register. This is indicated by the following:

 sttkdmaHal_GetSWReg name associated with a code function implementing the

command,

 reading of the function execution result from some strange memory locations corresponding

to chipset's memory space (0x3024 and 0x3028 offsets from chipset base),

 TKD 0x83ff0203 command format and a target of the operation likely indicating the register

(value 0x83).

Beside STK command 0x24, there are other similar STK commands (0x21-0x23) that make use of TKD

command targets likely indicating a SoC register (values 0x80-0x82).

This goes along the setCWPK command24 that makes use of SCK key (key implicitly associated with

0x81 location).

Thus, it is worth to investigate these commands in a little bit more detail in order to find out

whether SCK key could be accessed / leaked.

With the ability to extract arbitrary pairing key (such as the one from 0x02 key location), TKD

command 0x02ff8101 should be treated as under attacker's control. This should make it easier to

proceed with the investigation of STK commands 0x21-0x24 from SWREGS group (Table 4) in order

to verify whether access to some sensitive SW registers and SCK key in particular could be actually

gained.

It is also worth checking whether the plaintext value of a CWPK key set as a result of the usual

pairing key configuring commands (STK 0x01 and 0x02) could be accessed through target TKD

command locations 0x80-0x83 (through memory offsets around / at 0x3024 and 0x3028 from

chipset base).

Coprocessor related commands

There are many coprocessor related commands (opcode 0x0f and wait commands) of which

meaning and format has not been fully discovered.

These commands seem to be configuring single TKD core components (such as AES / TDES engine) or

actual pathways / routing between given TKD core parts (key locations, memory addresses and I/O

ports). The latter is concluded from the implementation of crypto DMA and its use of mov r15,

r15 instruction in particular (it can move data between implicitly configured source and destination

location). The nature of TKD commands seem to confirm this as well (commands indicate a source

and destination for a given operation).

It is worth to explore coprocessor related commands as there might exist a way to configure a

pathway from a secret key location to a memory or I/O port. It could be that these commands

24

 or all commands that configure a pairing key such as 0x01, 0x02, 0x10 and 0x11 STK commands.

influence whether the output of a command execution is provided or not (this is in particularly

important for pairing key configuration commands - some of them provide output, some do not).

PTI

PTI (Programmable Transport Interface) core is responsible for handling MPEG transport streams,

their filtering, descrambling and dispatch. PTI runs firmware code (embedded in and initialized by

ptiinit.ko device driver), which implements an unknown CPU instruction set.

Some initial analysis of this core along the approach taken has been presented in our paper from
2017 [9]. That analysis has lead us to the conclusion that key contents held in PTI's memory location
pointed by DescramblerKeysStart address were offsets to some other memory location
(such as a descrambler memory), which might have been used by the PTI DMA engine or a
descrambler itself.

The analysis of TKD core operation and associated user level libraries25 seem to confirm that (PTI

seems to interact with TKD crypto core by the means of offsets to descrambling key locations).

Taking into account the functionality of PTI component, its complexity (device driver binary is
250KB+ in size), SoC location, interaction with a descrambler and use across various ST chipset
generations, PTI seems to be a primary target for any further security investigation of DVB chipsets
from STMicroelectronics for all concerned parties (PTI is a common core for many ST DVB chipsets
generations).

FDMA and STBUS

SlimCORE processor executing firmware for TKD core control is not the only SlimCORE CPU available

as part of STi7111 SoC. There is also one more SlimCORE processor that runs firmware implementing

FDMA (Flexible Direct Memory Access) transfers.

In the environment of ITI-2849ST and ITI2850ST set-top-boxes, this firmware can be successfully

extracted and disassembled from fdma.ko device driver file26. Its analysis might provide additional

hints regarding SlimCORE instruction set and coprocessor instructions in particular (FDMA firmware

makes heavy use of these instructions).

Finally, as indicated on Fig. 1, all components of STi7111 SoC are interconnected with the use of an

STBus [10] system interconnect. It could be that SlimCORE coprocessor instructions are in some way

related to STBus (that they influence an interact with this system interconnect). Therefore, it is also

an interesting area to check in order to verify whether some protected SoC parts can be accessed by

the means of STBus.

OTP security fuses

STi7111 contains a dedicated OTP (one time programming) memory area containing various

configuration settings of the SoC. This area is mapped at 0xFE00D000 address and it contains such

settings as chipset security state and chip id. There are however many other interesting settings as

illustrated below:

25

 CopyTKDMAOffsetToTCsdKey and CopyTCsdKeytToTKDMAKey functions of libstd_drv_scds.so
library.
26

 FDMA SlimCORE firmware initialization takes place in stfdma_FDMA2Conf subroutine. References to
firmware code and data sections are immediately followed by pointers to magic strings ("DATA" and "PROG"
respectively).

STSECTOOLFUSE_ReadItem 00000001 00000005 netjtag_portstate (lock bit) @jtag_protect

(addr FE00D000,mask 0x0f, shift 0x0c)

STSECTOOLFUSE_ReadItem 00000002 00000001 @engineering_test_000 (FE00D028,0x01,0x06)

STSECTOOLFUSE_ReadItem 00000003 00000001 secure chipset (lock bit) @trans_cw_secure

(FE00D03c,0x01,0x01)

STSECTOOLFUSE_ReadItem 00000004 00000001 @trans_cw_enable (FE00D02c,0x01,0x05)

STSECTOOLFUSE_ReadItem 00000005 00000000 @crypt_cpu0_ifetch_src_rst

STSECTOOLFUSE_ReadItem 00000006 00000000 @crypt_cpu1_ifetch_src_rst

STSECTOOLFUSE_ReadItem 00000007 00000000 @crypt_cpu2_ifetch_src_rst

STSECTOOLFUSE_ReadItem 00000008 00000001 @crypt_sigdma_src_rst

STSECTOOLFUSE_ReadItem 00000009 00000001 @crypt_sigchk_src_rst

STSECTOOLFUSE_ReadItem 0000000a 00000001 @crypt_watchdog_src_rst

STSECTOOLFUSE_ReadItem 0000000b 00000000 @crypt_hash_include_addr

STSECTOOLFUSE_ReadItem 0000000c 00000001 enable_scs (lock bit) @crypt_sigchk_enable

STSECTOOLFUSE_ReadItem 0000000d 00000001 @mes0_enable

STSECTOOLFUSE_ReadItem 0000000e 00000000 @mes0_src_id_mon_enable

STSECTOOLFUSE_ReadItem 0000000f 00000001 @mes0_encrypt_all_enable

STSECTOOLFUSE_ReadItem 00000010 00000000 (lock bit) @t1_filter_enable

STSECTOOLFUSE_ReadItem 00000011 00000001 (lock bit) @dirt_disable

STSECTOOLFUSE_ReadItem 00000012 00004872 @engineering_0

STSECTOOLFUSE_ReadItem 00000013 0000251b @engineering_1

STSECTOOLFUSE_ReadItem 00000014 0000a642 @engineering_2

STSECTOOLFUSE_ReadItem 00000015 0000ba4b @engineering_3

STSECTOOLFUSE_ReadItem 00000016 00000000 @metal_fix_nb

STSECTOOLFUSE_ReadItem 00000017 00000001 @proc_type

STSECTOOLFUSE_ReadItem 00000018 00000002 @fab_loc

STSECTOOLFUSE_ReadItem 00000019 00000000 @customer_otp0

STSECTOOLFUSE_ReadItem 0000001a 00000000 @customer_otp1

STSECTOOLFUSE_ReadItem 0000001b 00000000 @customer_otp2

STSECTOOLFUSE_ReadItem 0000001c 00000000 @customer_otp3

We verified that arbitrary OTP programming of this area is possible, which makes it an interesting,

but also dangerous target for exploration.

It could be that overall chip security could be weakened (or even disabled) by the means of some of

the OTP settings.

The following OTP settings could be in particular interesting from a security point of view:

 all lock bit fuses that are not enabled (set to the value of 0) as they likely influence SoC

security (i.e. secure chipset setting),

 crypt_cpuX_ifetch_src_rst settings as these could influence whether the source (such as

a key) of an instruction fetch operation is leaked.

T1 bus configuration

T1 seems to be the internal bus associated with CCORE. The existence of this bus is mentioned in

several locations (PhD thesis [8], STM Linux distribution27, and t1_filter_enable OTP security

fuse among others).

In some previous distributions of ADB software for ITI-2849ST and ITI-2850ST set-top-boxes, the

libstd_drv_ccore.so library contained a ccore_T1Configure symbol associated with a

subroutine doing memory writes to 0xFE216400 based chipset memory area.

27

 linux-2.6.32.16_stm24_sh4_0205.patch

While the written values are not in particular interesting (mostly zero), the unused data immediately

following it formed what looked like blocks and their values seemed to follow a pattern:

.rodata:00005414 .data.l h'FC40

.rodata:00005418 .data.l h'FC04

.rodata:0000541C .data.l h'FC08

.rodata:00005420 .data.l h'FC00

[block 1]

.rodata:00005424 .data.l 8

.rodata:00005428 .data.l h'30100

.rodata:0000542C .data.l h'B

.rodata:00005430 .data.l h'60200

.rodata:00005434 .data.l h'1E

.rodata:00005438 .data.l h'10300

.rodata:0000543C .data.l h'32

.rodata:00005440 .data.l h'10400

.rodata:00005444 .data.l h'34

.rodata:00005448 .data.l h'40600

.rodata:0000544C .data.l h'35

.rodata:00005450 .data.l h'60100

.rodata:00005454 .data.l h'36

.rodata:00005458 .data.l h'30400

.rodata:0000545C .data.l h'37

.rodata:00005460 .data.l h'30400

.rodata:00005464 .data.l h'41

.rodata:00005468 .data.l h'30800

.rodata:0000546C .data.l h'44

.rodata:00005470 .data.l h'10600

.rodata:00005474 .data.l h'45

.rodata:00005478 .data.l h'10400

.rodata:0000547C .data.l h'51

.rodata:00005480 .data.l h'20000

.rodata:00005484 .data.l h'FFFF

.rodata:00005488 .data.l h'FFFF

[block 2]

.rodata:0000548C .data.l 8

.rodata:00005490 .data.l h'50202

.rodata:00005494 .data.l h'B

.rodata:00005498 .data.l h'30101

.rodata:0000549C .data.l h'1E

.rodata:000054A0 .data.l h'10400

.rodata:000054A4 .data.l h'32

.rodata:000054A8 .data.l h'20100

.rodata:000054AC .data.l h'34

.rodata:000054B0 .data.l h'40700

.rodata:000054B4 .data.l h'35

.rodata:000054B8 .data.l h'60500

.rodata:000054BC .data.l h'36

.rodata:000054C0 .data.l h'40100

.rodata:000054C4 .data.l h'37

.rodata:000054C8 .data.l h'40300

.rodata:000054CC .data.l h'41

.rodata:000054D0 .data.l h'40300

.rodata:000054D4 .data.l h'44

.rodata:000054D8 .data.l h'10700

.rodata:000054DC .data.l h'45

.rodata:000054E0 .data.l h'10402

.rodata:000054E4 .data.l h'51

.rodata:000054E8 .data.l h'10500

.rodata:000054EC .data.l h'FFFF

.rodata:000054F0 .data.l h'FFFF

...

It could be that these memory writes configure the possible interconnections (filter as in OTP fuse

name) between TKD Crypto core components (whether given key locations could be accessed,

whether the results of TKD commands produce results, etc.).

Key initialization quirks

Starting from firmware 3.5.0, some strange detail pertaining to the implementation of a key

initialization subroutine could be noticed:

l_0511 0x00409900 tst r9,00 ;AES ?

 0512 0x008c151c jne l_051c ;-> jump for AES

 0513 0x00fa4000 copTDES ;handle TDES

 0514 0x000f083c mov r15,r8 ;TKD CMD -> OUT

 0515 0x008e1515 wait1

 0516 0x00d00002 rpt 2

 0517 0x000f003c mov r15,r0 ;rpt 2 r0 -> OUT

 0518 0x00d00002 rpt 2

 0519 0x000f0c3c mov r15,r12 ;rpt 2 r12 -> OUT

 051a 0x008e151a wait1

 051b 0x008c0522 j l_0522

What's interesting in the code above is that as part of a single key initialization routine, r12 register

is used instead of the usual r0 (zero value). This register holds subroutine return addr for the

invocation of a key initialization code:

 0038 0x00ed003a mov r13,#003a ;subroutine return addr

 0039 0x008c04f5 j l_04f5 ;init all of the keys (CWPK,

 CWs)

 ...

l_04f5 0x000c0d3c mov r12,r13 ;r12 = subroutine return addr

 04f6 0x00a7000c ld r7,[r0,000c] // 0x4030 ;customer mode

 04f7 0x00407040 tst r7,40

 04f8 0x009c1510 jne,s l_0510 ;-> jump to the end

 04f9 0x0009003c mov r9,r0 ;r9 = 0 (TDES)

 04fa 0x00e10001 mov r1,#0001

 04fb 0x00407002 tst r7,02

 04fc 0x008814fe jz l_04fe

 04fd 0x0009013c mov r9,r1 ;r9 = 1 (AES)

l_04fe 0x00a8001c ld r8,[r0,001c] // 0x4070 ;= 0x00ff8101 (setCWPK)

 04ff 0x00ed0501 mov r13,#0501 ;subroutine return addr

 0500 0x008c0511 j l_0511 ;init single crypto key

It's rather unusual to tie an initialization of a cryptographic key with a firmware code return addr.

This alone requires further investigation in our opinion (whether such a key initialization is required

for proper CWPK and CW decryption, etc.).

TOOLS

SlimCORE disassembler

SlimCORE disassembler (SCDisasm) is a tool to disassemble SlimCORE processor instruction streams

from various firmwares used by STi7111 DVB chipsets. It implements the following features:

 SlimCORE instruction stream disassembly from a device driver file or input files

corresponding to firmware code / data sections,

 extraction of SlimCORE firmware data / code sections from a device driver file to output

files,

 statistics information regarding the usage of SlimCORE instructions (i.e. unknown,

recognized instructions).

Description

Table 10 describes command line arguments available in SCDisasm tool.

ARGUMENT DESCRIPTION
-dis The argument specifies a disassemble command.
-m drv|file The argument indicates whether a driver file or code dumps should be

used as a source for the tool operation.
-f drv_name The argument denotes the name of a device driver file to use.
-a ann_name The argument denotes the name of an annotation file to use.
-c code_file The argument denotes the name of a SlimCORE code dump file to use

(either input for a disassemble command or an output for the extraction
command)

-d data_file The argument denotes the name of a SlimCORE data dump file to use
(either input for a disassemble command or an output for the extraction
command)

-stat unk|all The argument indicates a statistics command and whether statistics for
unknown or all instructions should be given.

-ext code|data The argument indicates extraction command and whether SlimCORE code
or data section dumps should be extracted from a device driver file.

Table 10 Command line arguments of SCDisasm tool.

Sample uses

1. Disassemble SlimCORE firmware from a default device driver file and with the use of a given

annotations file:

run -dis -m drv -a rea\3.1.6.txt

/*## (c) SECURITY EXPLORATIONS 2011 poland #*/

/*## http://www.security-explorations.com #*/

SlimCore disassembler

- loading sttkdma_core_user.ko

 ver: STTKDMA-REL_3.1.6

- locating SlimCore firmware

 code at 0x00003820 size 5852 (0x16dc)

 - sha1 afe518789d1b0b1d3c0f8efd2704ac84a69140ed

 data at 0x00004efc size 1156 (0x0484)

 - sha1 d00044a77407b5a530f94c53bacbbf5b3ee3a0b4

- loading annotations rea\3.1.6.txt

- disassembling

[CODE]

########################

DISPATCH idx 0x04 -> 0x2000000 (init code)

########################

l_0000 0x00200000 add r0,r0,r0,#0000

 0001 0x00200000 add r0,r0,r0,#0000

 0002 0x00d00080 sync

 0003 0x00e30374 mov r3,#0374

 0004 0x00743210 movhi r4,r3<<16

 0005 0x00e4ffff mov r4,#ffff

 0006 0x00e3ffff mov r3,#ffff

 0007 0x00743210 movhi r4,r3<<16

 0008 0x00e30001 mov r3,#0001

 0009 0x00b04084 st r4,[r0,0084] // 0x5e10

 000a 0x00b03085 st r3,[r0,0085] // 0x5e14

 000b 0x00b0002c st r0,[r0,002c] // 0x40b0 = 0x00000000 ;counter = 0

 000c 0x00e60010 mov r6,#0010 ;memory idx of 0x4040 addr

 000d 0x00d00090 sync

 000e 0x00d00009 rpt 9

 000f 0x00b10601 st r0,[r6],r6+=#0001 ;store 0 to [0x4040-0x4060]

 0010 0x00a5008a ld r5,[r0,008a] // 0x5e28 ;chip customer mode

 0011 0x00e40040 mov r4,#0040

 0012 0x00735c80 and r3,r5,0x0f ;low nibble of chip customer mode

 0013 0x00c03005 cmp r3,#05

 0014 0x00981026 je l_0026 ;-> chip customer mode == 0x05

 ...

2. Extract code section of SlimCORE firmware from a default device driver file and save it into given

output file:

run -ext code -m drv -c code.dat

/*## (c) SECURITY EXPLORATIONS 2011 poland #*/

/*## http://www.security-explorations.com #*/

SlimCore disassembler

- loading sttkdma_core_user.ko

 ver: STTKDMA-REL_3.1.6

- locating SlimCore firmware

 code at 0x00003820 size 5852 (0x16dc)

 - sha1 afe518789d1b0b1d3c0f8efd2704ac84a69140ed

 data at 0x00004efc size 1156 (0x0484)

 - sha1 d00044a77407b5a530f94c53bacbbf5b3ee3a0b4

- saving code.dat

3. Extract data section of SlimCORE firmware from a given device driver file and save it into given

output file:

run -ext data -m drv -f sttkdma_core_user.ko -d data.dat

/*## (c) SECURITY EXPLORATIONS 2011 poland #*/

/*## http://www.security-explorations.com #*/

SlimCore disassembler

- loading sttkdma_core_user.ko

 ver: STTKDMA-REL_3.1.6

- locating SlimCore firmware

 code at 0x00003820 size 5852 (0x16dc)

 - sha1 afe518789d1b0b1d3c0f8efd2704ac84a69140ed

 data at 0x00004efc size 1156 (0x0484)

 - sha1 d00044a77407b5a530f94c53bacbbf5b3ee3a0b4

- saving data.dat

4. Show statistic regarding unknown instructions embedded in SlimCORE firmware loaded from a

given set of files corresponding to firmware code and data sections:

run -stat unk -m files -c code.dat -d data.dat

/*## (c) SECURITY EXPLORATIONS 2011 poland #*/

/*## http://www.security-explorations.com #*/

SlimCore disassembler

- loading code.dat

- loading data.dat

[UNKNOWN INSTRUCTIONS STATS]

opcode 008cxxxx cnt 1

opcode 008exxxx cnt 2

opcode 00b2xxxx cnt 2

opcode 00f0xxxx cnt 6

opcode 00f1xxxx cnt 4

opcode 00f2xxxx cnt 4

opcode 00f4xxxx cnt 4

opcode 00f8xxxx cnt 4

opcode 00ffxxxx cnt 1

total 9 opcodes

SlimCORE tracer

SlimCORE tracer is a tool that makes it possible to trace execution flow of SlimCORE processor

instructions. It implements the following features:

 tracing the execution of SlimCORE processor instructions (single stepping, dump of register

contents with proper indication of register changes),

 logging of a trace of executed instructions.

The tool was developed as part of SE-2011-01 project and its operation was suited to the

environment of fully compromised (OS root, JVM root and kernel level access privileges) ITI-2849ST /

ITI-2850ST set-top-boxes and SE-2011-01 Proof of Concept code in particular. A successful operation

and use of SlimCORE tracer may require customization and/or porting to the target STi7111

environment (target STB).

Tracer API

Proper operation of the tracer requires that arbitrary access to STi7111 chipset's memory is possible.

This in particular includes access to SlimCORE firmware's code and data sections at the time of its

execution.

Access to firmware code is necessary due to the fact that traced instructions are modified on the fly.

Access to firmware data stems from the fact that it is used by the tracer to keep state of its

execution.

Tracer's API class contains routines that need to be adopted to the requirements of a target STB

environment in order to provide the tracer with read and write access to STTKDMA memory. These

are illustrated in Table 11.

TRACER API SE-2011-01 POC ROUTINES DESCRIPTION
STTKDMA_READ(int

addr)

STTKDMA.tkdma_read The base routine making it
possible to read kernel
memory address.

STTKDMA_WRITE(int

addr,int val)

STTKDMA.tkdma_write The base routine making it
possible to write kernel
memory address with a given
value.

LOG(String s) ApiMonitor.log The base routine to log tracer's
output.

Table 11 Tracer's API subroutines.

Additionally, tracer's Config class contains several variables describing target location for a tracer

core routine (firmware hijacking location and location where tracer code could be appended). They

are described in Table 12.

TRACER VARIABLE SE-2011-01 POC VALUE DESCRIPTION
STTKDMA_BASE 0xFE248000 Chip base address
STTKDMA_DATA 0x4000 Offset of SlimCORE firmware

data section start (relative to
chip base)

STTKDMA_CODE 0x6000 Offset of SlimCORE firmware
code section start (relative to
chip base)

TRACER_DATA 0x0140 Offset of tracer's state
variables (relative to
STTKDMA_DATA)

TRACER_CODE 0x05b7 Offset of tracer's core routine
(relative to STTKDMA_CODE) /
starting location past the
firmware code section

Table 12 Tracer's API variables.

Description

Instead of making use of the hardware features of a SlimCORE processor28, tracer's implementation

is based on an idea of a binary instrumentation. Traced instructions are translated into other

instructions or their sequences. These instructions are executed by the tracer in such a way so that it

is possible to maintain information about the contents of registers and jump targets in particular

(whether conditional jumps were taken or not).

The tracer is composed of the following two parts:

 SlimCORE instruction disassembler and rewriter,

 core tracer routine.

The core tracer routine is copied at the end of an original firmware's code section29. It executes

binary translated instruction sequences produced by the disassembler and rewriter as illustrated on

Fig. 19.

28

 the Run I/O register from slim_core_map's embedded core structure and SLIM_RUN_STOP
SLIM_RUN_ENABLE and SLIM_RUN_STOPPED flags [7]
29

 code location 0x05b7 as original SlimCORE tracer's code has been implemented for firmware 3.1.6.

Fig. 19 SlimCORE tracer architecture.

The core tracer routine is entered when a breakpoint30 is hit and it never exits. Its code executes in a

loop as a response to notifications received from the tracer's disassembler and rewriter. The

disassembler and rewriter parses SlimCORE instruction to execute from a given firmware location

(denoted by tracer's IP variable), translates its opcode into a form suitable for the tracer and writes

it back into a dedicated execution block of the core routine.

The tracer maintains state information in firmware data section location starting at offset 0x4140.

The meaning of tracer state variables is illustrated in Table 13.

TRACER VARIABLE OFFSET IDX DESCRIPTION

R1-R14 0x00-0x0d Variables holding saved SlimCORE registers
(saved execution context)

DUMMY 0x0e A dummy variable used by the tracer NOP
instruction

STATUS 0x0f A variable indicating that a core tracer routine
has been reached (a breakpoint has been hit)

CMD 0x10 A variable indicating whether the tracer
should proceed with execution of any
translated instructions

BFLAG1, BFLAG2, BFLAG3 0x11-0x13 Variable indicating, which branch (1, 2 or 3)
has been taken as a result of a given
translated instructions' sequence execution

Table 13 Tracer's state variables.

Tracer gets executed as a result of hitting a breakpoint instruction. This instruction is a simple jump

to the beginning of a tracer core routine:

public static final int BREAK = 0x00d05b17; //JMP 0x5b7

30

 the interception breakpoint, there can be only one of it set.

CORE ROUTINE

The structure of a core tracer's routine is illustrated on Fig. 20.

Fig. 20 Tracer's core routine implementation.

The core routine starts with an instruction sequence responsible for the saving of an original

execution context. As a result, the contents of SlimCORE registers are stored into memory (variables

R1-R14):

 0x00b01050,// st r1,[r0,0050] offset 0x05b7

 0x00b02051,// st r2,[r0,0051] offset 0x05b8

 0x00b03052,// st r3,[r0,0052] offset 0x05b9

 0x00b04053,// st r4,[r0,0053] offset 0x05ba

 0x00b05054,// st r5,[r0,0054] offset 0x05bb

 0x00b06055,// st r6,[r0,0055] offset 0x05bc

 0x00b07056,// st r7,[r0,0056] offset 0x05bd

 0x00b08057,// st r8,[r0,0057] offset 0x05be

 0x00b09058,// st r9,[r0,0058] offset 0x05bf

 0x00b0a059,// st r10,[r0,0059] offset 0x05c0

 0x00b0b05a,// st r11,[r0,005a] offset 0x05c1

 0x00b0c05b,// st r12,[r0,005b] offset 0x05c2

 0x00b0d05c,// st r13,[r0,005c] offset 0x05c3

 0x00b0e05d,// st r14,[r0,005d] offset 0x05c4

Next, the value of a STATUS variable is set to 0 to indicate that a breakpoint has been hit (that

tracer's code has been reached):

 0x00b0005f,// st r0,[r0,005f] offset 0x05c5

Following that, the tracer waits in a loop for the CMD variable to change to the non-zero value. This

happens when a tracer is notified by the instruction rewriter to execute next instruction (to single

step over an instruction):

 0x00a50060,// ld r5,[r0,0060] offset 0x05c6

 0x00c05000,// cmp r5,#00 offset 0x05c7

 0x009815c6,// je 0x05c6 offset 0x05c8

Following that, the CMD variable state is restored to indicate a default state (a stop after an

instruction execution):

 0x00b0005e,// st r0,[r0,005e] offset 0x05c9

 0x00b00060,// st r0,[r0,0060] offset 0x05ca

Next, saved SlimCORE registers context is restored to the original values:

 0x00a10050,// ld r1,[r0,0050] offset 0x05cb

 0x00a20051,// ld r2,[r0,0051] offset 0x05cc

 0x00a30052,// ld r3,[r0,0052] offset 0x05cd

 0x00a40053,// ld r4,[r0,0053] offset 0x05ce

 0x00a50054,// ld r5,[r0,0054] offset 0x05cf

 0x00a60055,// ld r6,[r0,0055] offset 0x05d0

 0x00a70056,// ld r7,[r0,0056] offset 0x05d1

 0x00a80057,// ld r8,[r0,0057] offset 0x05d2

 0x00a90058,// ld r9,[r0,0058] offset 0x05d3

 0x00aa0059,// ld r10,[r0,0059] offset 0x05d4

 0x00ab005a,// ld r11,[r0,005a] offset 0x05d5

 0x00ac005b,// ld r12,[r0,005b] offset 0x05d6

 0x00ad005c,// ld r13,[r0,005c] offset 0x05d7

 0x00ae005d,// ld r14,[r0,005d] offset 0x05d8

The block containing the traced (binary translated by the rewriter) instruction sequence gets

executed:

 0x00d00090,// ins1 offset 0x05d9

 0x00d00090,// ins2 offset 0x05da

 0x00d00090,// ins3 offset 0x05db

 0x00d00090,// ins4 offset 0x05dc

 0x00d00090,// ins5 offset 0x05dd

As a result of the above, one of the code paths corresponding to branches of conditional instructions

could be taken. If this is the case, proper BFLAG variable is set accordingly:

 //branch 1

 0x00b00061,// st r0,[r0,0061] offset 0x05df

 0x00d05b17,// jmp 0x5b7 offset 0x05e0

 //branch 2

 0x00b00062,// st r0,[r0,0062] offset 0x05e1

 0x00d05b17,// jmp 0x5b7 offset 0x05e2

 //branch 3

 0x00b00063,// st r0,[r0,0063] offset 0x05e3

 0x00d05b17,// jmp 0x5b7 offset 0x05e4

After that, the core tracer's routine starts execution from the beginning (it waits in a loop for CMD

flag to be set by the disasssembler and rewriter part indicating next instruction to execute).

INSTRUCTION DISASSEMBLER AND REWRITER

The SlimCORE instruction opcodes disassembler and rewriter processes SlimCORE firmware

instructions and translates them into corresponding sequences for execution by the core tracer's

routine.

Upon processing of a given instruction, the translated instruction or their sequence is written into

the translated opcode block of a core tracer routine (indicated by the INS_OFF variable). The core

tracer routine is notified via CMD variable that a next instruction is ready to be traced (that is should

be executed in a single step manner).

Specific translation rules used by the instruction rewriter are briefly described in Table 14.

SOURCE
INSTRUCTION
(OPCODE)

TRANSLATED INSTRUCTION DESCRIPTION

WAITx (opcode&0xfff000)|(INS_OFF&0xfff) Wait instructions
are translated
directly to the
target PC location
(INS_OFF)

JMP reg 0xd00010|((BRANCH1_OFF&0xff0)<<4)|(BRANCH1_OFF&0x0f) Jumps through
registers are
translated to go
through branch1
code path

JMP imm 0xd00010|((BRANCH1_OFF&0xff0)<<4)|(BRANCH1_OFF&0x0f) Absolute jumps
are translated to
go through
branch1 code
path

J imm opcode&0xfffff000|(BRANCH1_OFF&0xfff) Absolute jumps
are translated to
go through
branch1 code
path

RPT opcode

opcode2
Repeat opcodes
are translated
directly along the
instruction that
follows it

Jxx off1

Jxx off2

...

opcode&0xfffff000|(BRANCH1_OFF&0xfff)

opcode2&0xfffff000|(BRANCH2_OFF&0xfff)

...

A sequence of
conditional jumps
following a given

instruction is
translated into
corresponding
conditional jumps
going through
branch code
paths (1, 2 or 3)

Table 14 Translation rules used by the instruction rewriter.

Sample uses

The following code sequence starts tracing the execution of SlimCORE instructions from 0x86

firmware location:

STTKDMADebug.trace(0x86);

The above invocation produces the following output by the tracer logging routine:

break at: 0x00000086

 r0 00000000 *r1 00000001 *r2 00000100 r3 00000000

*r4 00000003 *r5 00000023 *r6 00000303 *r7 00000005

*r8 00000006 *r9 23ff0001 r10 00000000 *r11 00000001

 r12 00000000 *r13 0000024e *r14 000000d0 IP 00000086

0086 0x00e10001 mov r1,#0001

0086 0x00e10001 mov r1,#0001

break at: 0x00000087

 r0 00000000 r1 00000001 r2 00000100 r3 00000000

 r4 00000003 r5 00000023 r6 00000303 r7 00000005

 r8 00000006 r9 23ff0001 r10 00000000 r11 00000001

 r12 00000000 r13 0000024e r14 000000d0 IP 00000087

0087 0x00a20048 ld r2,[r0,0048] // 0x4120

break at: 0x00000088

 r0 00000000 r1 00000001 *r2 00000001 r3 00000000

 r4 00000003 r5 00000023 r6 00000303 r7 00000005

 r8 00000006 r9 23ff0001 r10 00000000 r11 00000001

 r12 00000000 r13 0000024e r14 000000d0 IP 00000088

0088 0x00722c21 bitval r2,r2,#0002

0089 0x00881091 jz l_0091

break at: 0x00000091

 r0 00000000 r1 00000001 *r2 00000000 r3 00000000

 r4 00000003 r5 00000023 r6 00000303 r7 00000005

 r8 00000006 r9 23ff0001 r10 00000000 r11 00000001

 r12 00000000 r13 0000024e r14 000000d0 IP 00000091

0091 0x00a20070 ld r2,[r0,0070] // 0x41c0

break at: 0x00000092

 r0 00000000 r1 00000001 r2 00000000 r3 00000000

 r4 00000003 r5 00000023 r6 00000303 r7 00000005

 r8 00000006 r9 23ff0001 r10 00000000 r11 00000001

 r12 00000000 r13 0000024e r14 000000d0 IP 00000092

0092 0x00721020 bitset r2,r1&0x01<<0

break at: 0x00000093

 r0 00000000 r1 00000001 *r2 00000001 r3 00000000

 r4 00000003 r5 00000023 r6 00000303 r7 00000005

 r8 00000006 r9 23ff0001 r10 00000000 r11 00000001

 r12 00000000 r13 0000024e r14 000000d0 IP 00000093

0093 0x00d00090 sync

break at: 0x00000094

 r0 00000000 r1 00000001 r2 00000001 r3 00000000

 r4 00000003 r5 00000023 r6 00000303 r7 00000005

 r8 00000006 r9 23ff0001 r10 00000000 r11 00000001

 r12 00000000 r13 0000024e r14 000000d0 IP 00000094

0094 0x00b02070 st r2,[r0,0070] // 0x41c0

break at: 0x00000095

 r0 00000000 r1 00000001 r2 00000001 r3 00000000

 r4 00000003 r5 00000023 r6 00000303 r7 00000005

 r8 00000006 r9 23ff0001 r10 00000000 r11 00000001

 r12 00000000 r13 0000024e r14 000000d0 IP 00000095

...

REFERENCES
[1] STMicroelectronics

http://www.st.com

[2] STi7111 Low-cost HDTV satellite set-top box decoder for Microsoft VC-1, H.264 and MPEG-2

http://www.st.com/content/st_com/en/products/digital-set-top-box-

ics/legacy-products/legacy-processors/sti7111.html

[3] SE-2011-01 Security weaknesses in a digital satellite TV platform

http://www.security-explorations.com/en/SE-2011-01.html

[4] SE-2011-01 Issues #17-19

http://www.security-explorations.com/materials/se-2011-01-st.pdf

[5] Security vulnerabilities of Digital Video Broadcast chipsets

http://www.security-explorations.com/materials/se-2011-01-hitb2.pdf

[6] IST FP6 PROSYD EU project

http://www.prosyd.org

[7] OpenDuckbox project

https://gitorious.org/open-duckbox-project-sh4/tdt

[8] Separation of Functional and Non-Functional Aspects in Transactional Level Models of Systems-

on-Chip

https://pdfs.semanticscholar.org/82dd/50f218bb85c9ff221c2c766e3597fa

b68bdc.pdf

[9] Ideas regarding vulnerabilities in ST DVB chipsets

http://www.security-explorations.com/materials/se-2011-01_ideas.pdf

[10] STBus communication system concepts and definitions

http://www.st.com/content/ccc/resource/technical/document/user_manua

l/39/81/fa/c8/2e/4d/41/f5/CD00176920.pdf/files/CD00176920.pdf/jcr:co

ntent/translations/en.CD00176920.pdf

[11] Security threats in the world of digital satellite television

http://www.security-explorations.com/materials/se-2011-01-hitb1.pdf

 APPENDIX A
By issuing different TKD commands we found out the following:

 bit 0 (encrypt / decrypt) of a TKD command did not influence the result of the command if

destination was a key slot (commands such as 01xxxxxx, 04xxxxxx or 15xxxxxx). In such

cases, a conducted operation was always the same. Upon the test done with respect to the

04ff0000 TKD command we conclude that this was always the decryption operation,

 bit 0 (encrypt / decrypt) influenced the result of the TKD command if destination was set to

0xff (ffxxxxxx commands).

The test below verifies the nature of the 0x04ff0000 TKD command. The test was conducted with

the following values of the plaintext / encrypted Control Words:

CW1 [54 29 09 86 26 55 85 00] CW2 [f2 cd 09 c8 d3 bf 30 c2] plaintext

CW1 [4e cd c9 e0 a0 52 bd 2f] CW2 [35 39 76 bb a2 f3 9f 80] encrypted

1) First, the input data is set to the value of the encrypted Control Word:

test> input "e0 c9 cd 4e 2f bd 52 a0 e0 c9 cd 4e 2f bd 52 a0"

INPUT: e0 c9 cd 4e 2f bd 52 a0 e0 c9 cd 4e 2f bd 52 a0

2) Next, 0x04ff0000 TKD command is issued. Bit 0 (encryption / decryption) of the command is not

set and this should indicate that the command does the encryption operation:

test> ed 0x04ff0000 0x00fa4000 0x008e1abc

tkcmd 04ff0000

[running SLIM code]

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

3) In the next step, input data is set to the block of zero values:

test> input "00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00"

INPUT: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

4) Then, 0xffff0401 TKD command is issued, which makes use of the key at slot 04 and does the

decryption operation (due to the value of bit 0 set to 1):

test> ed 0xffff0401 0x00fa4000 0x008e1abc

tkcmd ffff0401

[running SLIM code]

b9 6a 0c e8 6c d6 44 2e b9 6a 0c e8 6c d6 44 2e

The result of the decryption operation is the following vector of data:

b9 6a 0c e8 6c d6 44 2e b9 6a 0c e8 6c d6 44 2e

5) Finally, a test is conducted that decrypts the input block of zero values with the use of the

plaintext Control Word used as a decryption key. Pure Java API is used for that purpose:

test> tdes d "00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00" "26 55 85 00 54 29

09 86 26 55 85 00 54 29 09 86"

e8 0c 6a b9 2e 44 d6 6c e8 0c 6a b9 2e 44 d6 6c

In a result, the same data "b9 6a 0c e8 6c d6 44 2e b9 6a 0c e8 6c d6 44 2e" is obtained.

This confirms that the operation at step 2 did the DECRYPTION operation in a result of which, key

slot at index 4 was loaded with plaintext Control Word value (encrypted Control Word was

decrypted).

Finally, a quick test is conducted in order to verify whether bit 0 has any influence on the 0x04ff0000

command:

test> input "e0 c9 cd 4e 2f bd 52 a0 e0 c9 cd 4e 2f bd 52 a0"

test> ed 0x04ff0001 0x00fa4000 0x008e1abc

tkcmd 04ff0001

[running SLIM code]

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

test> input "00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00"

test> ed 0xffff0401 0x00fa4000 0x008e1abc

tkcmd ffff0401

[running SLIM code]

b9 6a 0c e8 6c d6 44 2e b9 6a 0c e8 6c d6 44 2e

The above proves that both 0x04ff0000 and 0x04ff0001 TKD commands give same results, thus bit 0

does not matter.

The test above also proves that the value of bit 0 (encrypt / decrypt) of TKD commands is not

consistent across the whole TKD command space. It may either indicate encrypt / decrypt

functionality or be fixed to the given operation (such as decryption).

