
 

 

 

 

 

 

Reverse engineering tools for  

ST DVB chipsets 

SRP-2018-01 

 

  



 

 

DISCLAIMER 
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ANY LOST PROFITS, REVENUE, SALES, DATA, OR COSTS OF PROCUREMENT OF 

SUBSTITUTE GOODS OR SERVICES, PROPERTY DAMAGE, PERSONAL INJURY, 

INTERRUPTION OF BUSINESS, LOSS OF BUSINESS INFORMATION, OR FOR ANY SPECIAL, 

DIRECT, INDIRECT, INCIDENTAL, ECONOMIC, COVER, PUNITIVE, SPECIAL, OR 

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND WHETHER ARISING UNDER 

CONTRACT, TORT, NEGLIGENCE, OR OTHER THEORY OF LIABILITY ARISING OUT OF THE 

USE OF OR INABILITY TO USE THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN 
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POSSIBILITY OF SUCH DAMAGES. 

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL 
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INTRODUCTION 
STMicroelectronics' [1] SlimCORE processor is one of the helper cores of STi7111 DVB chipset SoC 

(Fig. 1) [2]. This SoC is used as a base chipset of PayTV set-top-box devices of many digital TV 

operators around the world (both satellite and terrestrial). 

 

Fig. 1 SlimCORE location in STi7111 SoC. 

This document provides a brief description of SlimCORE CPU and its firmware code used by Platform 

N digital satellite TV provider at the end of 2011 in its Advanced Digital Broadcast (ADB) set-top-

boxes (models ITI-2849ST and ITI-2850ST)1. This was the base firmware code used by Security 

Explorations to analyze security of STi7111 chipset as part of SE-2011-01 security research project 

[3]. 

All of the information contained in this document are the result of a tedious reverse engineering 

effort conducted in 2010 and 2011. As such, provided information may not be consistent with 

original vendor's documentation for SlimCORE processor. It may be incomplete and include many 

inaccuracies. Regardless of the above, it was sufficient to discover 2 security vulnerabilities (Issue 18 

and 19) [4][5] in STi7111 SoC and implement tools facilitating the analysis of a chipset operation 

(SlimCORE disassembler and tracer). 

SlimCORE PROCESSOR 
SlimCORE processor came to life as a result of a collaboration between ST UK and OneSpin after the 

spin-off from Infineon [6]. It is a lightweight processor with 27 instructions and a 4-stage pipeline. 

                                                           
1
 SlimCORE firmware version STTKDMA-REL_3.1.6 



 

 

Processor special features include a coprocessor interface, circular buffer operation, a STOP and RPT 

instructions. 

Register Set 

SlimCORE is a 32-bit core. It has 14 general purpose 32-bit registers (R0-R14), a special register 

corresponding to the instruction pointer (IP) and a special I/O register (R15). This is illustrated on Fig. 

2. 

 

Fig. 2 SlimCore registers. 

We figured out that register R0 denotes a zero value due to its use as a base register of certain 

memory addressing instructions: 

  ld r9,[r0,0020] // 0x4080 = 0x4000+0000+0x20*4 

Register R13 corresponds to the LINK register due to its frequent use as a holder of a return address 

from subroutine calls: 

  0039 0x00ed003b   mov r13,#003b  ;subroutine return addr 

  003a  0x008c04e1   j l_04e1       ;init keys subroutine 

  003b     0x00e40312   mov r4,#0312  

Finally, register R14 was concluded to be an equivalent of a stack pointer register upon the 

construction of instruction sequences denoting prologs of arbitrary subroutine calls: 

######################## 

SUB l_050f 

MAIN DISPATCH 

r14 = 0xd0 

########################  

l_050f  0x00b01eff   st r1,[r14,00ff]    ;save r1 on stack 

  0510  0x00b0aefe   st r10,[r14,00fe]  ;save r10 on stack 

  0511  0x003ee002   sub r14,r14,r0,#0002 ;alloc locals 

IP register denotes an index of a 32bit memory word containing an instruction to execute. The 

memory location from which an instruction opcode is to be fetched and executed is described by 

this formula: 



 

 

   opcode_addr = IP*4 

Register R15 indicates that a given register move, memory load or store operation are to be 

conducted with respect to I/O communication link with one of chipsets' cores (such as TKD Crypto 

core). 

SlimCORE also contains register flags. We neither figured out, nor proceeded with reverse 

engineering of the flags register location and its access methods (instructions)2. It is sufficient to say 

that sequences of arithmetic and conditional instructions indicate the existence of an equivalent 

(known from other CPU architectures) of the following flags: 

 Z / EQ (zero or equal result), 
 S (signed result), 
 C (result with carry / borrow). 

Memory Addressing 

SlimCORE implements all memory addressing with the use of a word number - an index to an array 

of 32bit data items. 

Arbitrary memory accesses are implemented with the use of load (LD) and store (SR) instructions. 

These instruction make use of the following addressing modes to indicate either source (LD) or 

destination (ST) memory operand: 

1) a register based addressing with an immediate index: 
  

   [register+index] 

2) a register based addressing and an immediate value incrementing the base register 
   
                               [register],register+=imm 
 
Taking into account that the immediate index denotes a word number, for case 1 the target memory 

address to access is computed as following: 

    addr = register_content+4*index 

SlimCORE processor operates in a little endian mode. As a result, 32-bit memory words for both 

code (instruction opcodes) and data are stored starting from the least significant byte. Thus, a 32-bit 

wide integer value of 0x11223344 is stored in memory as a sequence of 0x44, 0x33, 0x22 and 0x11 

bytes. 

Memory spaces 

SLIMCore instructions can access either DATA or I/O memory spaces. In our environment, the 

beginning of a DATA memory region was set at 0x4000 offset relative to the chip base address3. I/O 

memory space began at 0x5e00 offset. All load / store instructions with reg2 opcode equal to 0 

(register 0) referenced these areas solely with the use of an immediate index as indicated below: 

                                                           
2
 this wasn't necessary from a point of view of completing our security analysis of the chip. 

3
 the value of 0xFE248000 for ADB set-top-boxes. 



 

 

0x00b03085   st r3,[r0,0085] // store r3 to 0x5e14 

0x00b0002c   st r0,[r0,002c] // store r0 to 0x40b0 

Additionally, arbitrary communication I/O operations (such as data exchange with TKD core) are 

implemented with the use of special load, store and move instructions. This is illustrated in Table 1. 

OPERATION TYPE INSTRUCTION DESCRIPTION 

Store data (OUT operation) mov r15, reg Store the contents of register 
reg to TKD core 

ld r15,[r0,imm] Store the contents of a 
memory location indicated by 

imm index reg to TKD core 

Load data (IN operation) mov reg, r15 load the contents of register 

reg with the value read from 
TKD core 

st r15,[reg,imm] Load the contents of a memory 
location indicated by imm 
index reg with the value read 
from TKD core 

 
Table 1 Instructions for data exchange with Crypto TKD core. 

It's worth to mention that IN and OUT channels linked to the I/O register seem to be associated with 

different IN and OUT buffers (or a single buffer with different IN and OUT positions). We reason this 

upon the following code implementing byte swap operation during DMA crypto transfer: 

l_03c2  0x00030f3c   mov r3,r15  ; r3 <- IN 

  03c3  0x000330c0   swap r3,r3 

  03c4  0x000f033c   mov r15,r3  ; r3 -> OUT 

  03c5  0x00030f3c   mov r3,r15  ; r3 <- IN 

  03c6  0x000330c0   swap r3,r3 

  03c7  0x000f033c   mov r15,r3  ; r3 -> OUT 

  03c8  0x00030f3c   mov r3,r15  ; r3 <- IN 

  03c9  0x000330c0   swap r3,r3 

  03ca  0x000f033c   mov r15,r3  ; r3 -> OUT 

  03cb  0x00030f3c   mov r3,r15  ; r3 <- IN 

  03cc  0x000330c0   swap r3,r3 

  03cd  0x000f033c   mov r15,r3  ; r3 -> OUT 

 

If the I/O register was connected to the same buffer (or position), consecutive IN and OUT 

operations would be able to change only 1 word, not 4 of them. 

Reverse engineering approach 

Reverse engineering of the format of all instructions described below was started from a format of a 

single unconditional instruction jump (JMP), which was leaked by a GNU source code for SLIM Core 

Generic driver [7]: 

 // Init imem so every instruction is a jump to itself 

 for (n = 0; n < core->imem_size/ 4; n++) 

  SLIM_IMEM(core, n) =  0x00d00010 | (n & 0xf)  

      | ((n & 0xfff0) << 4); 



 

 

 

The above code sequence carries the following generic information about SlimCORE instructions: 

 instruction opcode is 32-bit wide - hint A, 
 memory addressing is conducted by a word index (n denotes an address of an instruction 

itself, although the instruction opcode width is 4 bytes, n is incremented by 1) - hint B. 
 
In the next step, the format of a memory store (ST) instruction was discovered. This was achieved by 

the means of matching the pattern of the result provided by the GetPublicID command format 
with a sequence of instruction opcodes embedded in SlimCORE firmware.  
 

The result of GetPublicID command was provided as a sequence of four 32-bit words as 
indicated by Fig. 3. 
  

 
 

Fig. 3 Output buffer of a GetPublicID command. 

The only 32-bit words opcode sequence (hint A) available in firmware code that exploited the filling 
of an output buffer in a form of accesses to consecutive memory indexes (hint B) was conducted in 
only one memory location as shown on Fig. 4. 
 

 
 

Fig. 4 SlimCORE instruction sequence corresponding to GetPublicID result. 

Our guess was confirmed by the means of a manual change of the located sequence and observation 

of the result of GetPublicID command. Most importantly, a change of a ST R5 instruction with ST 
R0 instruction resulted in a first word of the output buffer to be set to 0. This and other experiments 
with the located opcode sequence such as those changing the index word and source register in 
particular confirmed that these are indeed memory store instructions. As a result, its initial format 
could be discovered: 
 
ST - Store reg1 to memory location pointed by reg2 and memory index imm 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 1 1 0 0 0 0 reg1 reg2 imm 

 



 

 

The format of a memory load instruction opcode (LD) was discovered building on the format of ST 
opcode and by the means of changing the LD R5 instruction from the located opcode sequence and 
observation of the output buffer obtained. More specifically, changing the source register field to 
given index of the output buffer filled with a particular value resulted in that value being returned as 
the first word of the output buffer (chip ID location). This was sufficient to confirm an initial format 
of a memory load (LD) instruction: 
 
LD - Load reg1 from memory location pointed by reg2 and memory index imm 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 1 0 0 0 0 0 reg1 reg2 imm 

 

Knowledge about the format of JMP, LD and ST instructions was sufficient to discover all other 
SlimCORE instruction opcodes. 

 

 
 

Fig. 5 Running user provided code as part of GetPublicID code path. 

We exploited the ability to change the operation of SLIM Core firmware in runtime and overwrote 
SlimCORE firmware memory in a way that made it possible to inject a custom code sequence into 
the GetPublicID code path. This is illustrated on Fig. 5. 
 
Custom code sequence was implemented by the means of embedding an unknown instruction or 
their sequence around the sequence of JMP, LD and STORE instructions only. The custom sequence 
was formatted as following: 

 JMP from firmware to user’s code path 
o STORE the contents of registers (firmware context) 

- LOAD user’s environment (contents of registers) 



 

 

- EXECUTE unknown SLIMCore instruction opcode 

- STORE user’s environment (contents of registers) 
o LOAD the contents of registers (firmware context) 

 JMP back to firmware code path. 
 
An effect of the execution of an unknown instruction opcode to memory and registers was observed. 
In our case, the custom SlimCore code sequence injected into the GetPublicID code path had the 
following implementation: 
 
int code[]={ 

  0x00b01050,//   st r1,[r0,0050] offset 0x05b7 

  0x00b02051,//   st r2,[r0,0051] offset 0x05b8 

  0x00b03052,//   st r3,[r0,0052] offset 0x05b9 

  0x00b04053,//   st r4,[r0,0053] offset 0x05ba 

  0x00b05054,//   st r5,[r0,0054] offset 0x05bb 

  0x00b06055,//   st r6,[r0,0055] offset 0x05bc 

  0x00b07056,//   st r7,[r0,0056] offset 0x05bd 

  0x00b08057,//   st r8,[r0,0057] offset 0x05be 

  0x00b09058,//   st r9,[r0,0058] offset 0x05bf 

  0x00b0a059,//   st r10,[r0,0059] offset 0x05c0 

  0x00b0b05a,//   st r11,[r0,005a] offset 0x05c1 

  0x00b0c05b,//   st r12,[r0,005b] offset 0x05c2 

  0x00b0d05c,//   st r13,[r0,005c] offset 0x05c3 

  0x00b0e05d,//   st r14,[r0,005d] offset 0x05c4 

 

  0x00000000,//   SLOT FOR AN UNKNOWN INSTRUCTION  

                  OPCODE TO TEST 

 

  0x00a10050,//   ld r1,[r0,0050] offset 0x05d6 

  0x00a20051,//   ld r2,[r0,0051] offset 0x05d7 

  0x00a30052,//   ld r3,[r0,0052] offset 0x05d8 

  0x00a40053,//   ld r4,[r0,0053] offset 0x05d9 

  0x00a50054,//   ld r5,[r0,0054] offset 0x05da 

  0x00a60055,//   ld r6,[r0,0055] offset 0x05db 

  0x00a70056,//   ld r7,[r0,0056] offset 0x05dc 

  0x00a80057,//   ld r8,[r0,0057] offset 0x05dd 

  0x00a90058,//   ld r9,[r0,0058] offset 0x05de 

  0x00aa0059,//   ld r10,[r0,0059] offset 0x05df 

  0x00ab005a,//   ld r11,[r0,005a] offset 0x05e0 

  0x00ac005b,//   ld r12,[r0,005b] offset 0x05e1 

  0x00ad005c,//   ld r13,[r0,005c] offset 0x05e2 

  0x00ae005d,//   ld r14,[r0,005d] offset 0x05e3 

 

  0x00d01c1a //   jmp l_01ca       offset 0x05e4 

}; 

 

The abovementioned approach was used for a systemic discovery of SlimCORE instructions' format. 

Instruction opcodes were discovered one by one. The scope of a discovery process was limited to 

unknown opcodes from firmware code. 

Beside the approach outlined above, some code patterns that started to become visible along 

instructions' discovery process were also exploited. This in particular includes, but is not limited to 

the patterns of MOV instructions (Fig. 6) along with CMP and conditional jump instructions (Fig. 7). 



 

 

 

Fig. 6 MOV instructions patterns. 

Finally, for proper conditional jump handling, the custom code needed to be extended to include 

more than one instruction (a sequence of MOV, CMP and an unknown conditional jump). 

 
Fig. 7 CMP and conditional jump instructions patterns. 

Instruction set 

SlimCORE uses a RISC-style fixed length instruction opcodes. All processor opcodes are 32-bit wide. 

Only lower 24 bits of each opcode seem to be used though (bits 24-31 of instruction opcode are set 

to a value of 0). 

The processor implements memory access, branching, arithmetic, logical, shift and coprocessor 

instructions among others. Below, a more detailed information regarding the opcode format and 

operation of specific instructions is given. All instruction are listed according to their opcode value 

(bits 20-23). 

Please, note that in some cases little or no generalization of discovered instruction opcodes was 

performed as reverse engineering process was focused on discovering instructions' functionality 

needed for a successful analysis of firmware code, not to obtain a complete and accurate 

information regarding SlimCORE instruction set. 

0x00 opcodes (MOV, SWAP) 

MOV - Move to register 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 reg1 0 0 0 0 reg2 0 0 1 1 1 1 0 0 



 

 

 

Notation: 

MOV reg1, reg2 

Description: 

Move the contents of register reg2 to register reg1. 

SWAP - Swap registers 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 reg1 reg2 0 0 0 0 1 1 0 0 0 0 0 0 

 

Notation: 

SWAP reg1, reg2 

Description: 

Swaps contents of registers reg1 and reg2. 

0x01 opcodes (SHL, SHR) 

SHL - Logical shift left 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 1 reg1 reg2 0 0 0 0 0 0 0 imm 

 

Notation: 

SHL reg1,reg2,#imm 

Description: 

Shift the contents of registers reg2 to the left by the number of bits denoted by an immediate 

operand and store result to register reg1. 

SHR - Logical shift right 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 1 reg1 reg2 0 0 0 0 0 0 1 imm 

 

Notation: 

SHR reg1,reg2,#imm 

Description: 



 

 

Shift the contents of registers reg2 to the right by the number of bits denoted by an immediate 

operand and store result to register reg1. 

0x02 opcodes (ADD) 

ADD - Arithmetic Add 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 0 reg1 reg2 reg3 imm 

 

Notation: 

ADD reg1, reg2, reg3, #imm 

Description: 

Add the contents of reg3 register and an immediate operand to the contents of reg2 register and 

store result to register reg1. 

0x03 opcodes (SUB) 

SUB - Arithmetic Sub 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 1 reg1 reg2 reg3 imm 

 

Notation: 

SUB reg1, reg2, reg3, #imm 

Description: 

Substract the contents of reg3 register and an immediate operand from the contents of reg2 register 

and store result to register reg1. 

0x04 opcodes (AND, TST) 

AND - Logical AND 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 reg1 reg2 reg3 0 0 0 0 0 0 0 0 

 

Notation: 

AND reg1,reg2,reg3 

Description: 

Perform logical AND of the contents of registers reg2 and reg3 and store result to register reg1. 



 

 

AND - Logical AND 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 reg1 reg2 0 0 0 0 imm 

 

Notation: 

AND reg1,reg2,#imm 

Description: 

Perform logical AND of the contents of register reg2 and an immediate operand and store result to 

register reg1. 

TST - Test register value 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 0 0 0 0 reg 0 0 0 0 imm 

 

Notation: 

TST reg,#imm 

Description: 

Conduct logical AND of a register content with an immediate operand value without modifying the 

register. The operation sets register flags accordingly (i.e. indicating zero / non-zero result). 

TST - Test register value 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 0 0 0 0 reg1 reg2 0 0 0 0 0 0 0 0 

Notation: 

TST reg1,reg2 

Description: 

Conduct logical AND of the contents of registers reg1 and reg2 without modifying the registers. The 

operation sets register flags accordingly (i.e. indicating zero / non-zero result). 

0x05 opcodes (OR, TST) 

OR - Logical OR 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 1 reg1 reg2 reg3 0 0 0 0 0 0 0 0 

 



 

 

Notation: 

OR reg1,reg2,reg3 

Description: 

Perform logical OR of the contents of registers reg2 and reg3 and store result to register reg1. 

OR - Logical OR 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 1 reg1 reg2 0 0 0 0 imm 

 

Notation: 

OR reg1,reg2,#imm 

Description: 

Perform logical OR of the contents of register reg2 and an immediate operand and store result to 

register reg1. 

TST - Test 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 1 0 0 0 0 0 0 0 0 reg 0 0 0 0 0 0 0 0 

 

Notation: 

TST reg,reg 

Description: 

Test the value of register operand for zero and set register flags accordingly. 

0x06 opcodes (XOR) 

XOR - Logical XOR 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 0 reg1 reg2 reg3 0 0 0 0 0 0 0 0 

 

Notation: 

XOR reg1,reg2,reg3 

Description: 

Perform logical XOR of the contents of registers reg2 and reg3 and store result to register reg1. 



 

 

XOR - Logical OR 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 0 reg1 reg2 0 0 0 0 imm 

 

Notation: 

XOR reg1,reg2,#imm 

Description: 

Perform logical XOR of the contents of register reg2 and an immediate operand and store result to 

register reg1. 

0x07 opcodes (AND, MOV, MOVZX, MOVHI, BITSET, BITCLR, BITVAL, BITTST) 

AND - Logical AND 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 1 reg1 reg2 1 1 bitnum 0 0 0 0 0 

 

Notation: 

AND reg1, reg2, (1^bitnum-1) 

Description: 

Perform logical AND of the contents of registers reg2 and a bitmask denoted by a bitnum operand to 

register reg1. 

MOV - Move to register 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 1 reg1 reg2 1 1 bitnum shift 

 

Notation: 

MOV reg1, (reg2>>shift)&(1^bitnum-1) 

Description: 

Shift the contents of registers reg2 to the right by shift bits, and store result number of bits denoted 

by a bitnum operand to register reg1. 

MOV - Move to register 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 1 reg1 reg2 0 0 bitnum shift 

 



 

 

Notation: 

MOV reg1, (reg2&(1^bitnum-1))<<shift 

Description: 

Shift the lower number of bits denoted by a bitnum operand of register reg2 to the left by shift bits 

and store the result to register reg1. 

MOV - Move to register 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 1 reg1 reg2 0 1 bitnum 0 0 0 0 0 

 

Notation: 

MOV reg1, reg2&(1^bitnum-1) 

Description: 

Move the lower number of bits denoted by a bitnum operand of register reg2 to register reg1. 

MOV - Move to register 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 1 reg1 reg2 0 0 bitnum 0 0 0 0 0 

 

Notation: 

MOV reg1, reg2&(1^bitnum-1) 

Description: 

Move the lower number of bits denoted by a bitnum operand of register reg2 to register reg1. 

MOV - Move to register 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 1 reg1 reg2 0 1 0 0 0 0 1 shift 

 

Notation: 

MOV reg1, reg2&0x01<<shift 

Description: 

Shift the lower bit of register reg2 to the left by a shift operand and store the result to register reg1. 

MOVZX - Move to register and zero extend 



 

 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 1 reg1 reg2 0 1 0 1 0 0 0 0 0 0 0 0 

 

Notation: 

MOVZX reg1, reg2 &0xff 

Description: 

Move the contents of the lower 8 bits of register reg2 to register reg1 and set the remaining bits 

(bits 8-31) of reg1 to 0. 

MOVHI - Move to register high 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 1 reg1 reg2 0 0 bitnum 1 0 0 0 0 

 

Notation: 

MOVHI reg1, (reg2&(1^bitnum-1))<<16 

Description: 

Move bitnum number of lower bits of register reg2 to high 16 bits of register reg1. 

MOVHI - Move to register high 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 1 reg1 reg2 0 0 1 0 0 0 0 1 0 0 0 0 

 

Notation: 

MOVHI reg1, reg2<<16 

Description: 

Move 16 lower bits of register reg2 to high 16 bits of register reg1. 

BITSET - Bit set 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 1 reg1 reg2 0 0 0 0 0 0 1 shift 

 

Notation: 

BITSET reg1, reg2&0x01<<shift 

Description: 



 

 

Set bit number of register reg1 denoted by a shift operand to the value of bit 0 of register reg2. 

BITCLR - Bit clear 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 1 reg1 0 0 0 0 0 0 0 0 0 0 1 shift 

 

Notation: 

BITCLR reg1, 0x01<<shift 

Description: 

Set bit number of register reg1 denoted by a shift operand to the value of 0. 

BITVAL - Get bit value 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 1 reg1 reg2 1 1 0 0 0 0 1 shift 

 

Notation: 

BITVAL reg1, reg2, #1<<shift 

Description: 

Get the value of a bit number denoted by n operand from register reg2 and store it in register reg1. 

BITTST - Bit test 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 1 0 0 0 0 reg 1 1 0 0 0 0 1 shift 

 

Notation: 

BITTST reg, #1<<shift 

Description: 

Test the value of a bit number denoted by a shift operand in register reg. 

0x08 opcodes (JMP, J, JZ, JNE, JS, JNS, WAIT) 

JMP - Jump register 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 0 0 1 0 0 0 0 0 0 reg 0 0 0 0 0 0 0 0 

 

Notation: 



 

 

JMP reg 

Description: 

Unconditionally jump to target location given by the contents of register operand. 

J - Always jump to target location 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 0 1 1 0 0 0 0 0 0 target 

 

Notation: 

J target 

Description: 

Unconditionally jump to target location given by an operand. 

JZ - Jump if zero 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 0 1 0 0 0 0 0 0 1 target 

 

Notation: 

JZ target 

Description: 

Jump to target location given by an operand register flags indicate zero result. 

JNE - Jump if not equal 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 0 1 1 0 0 0 0 0 1 target 

 

Notation: 

JNE target 

Description: 

Jump to target location given by an operand if register flags indicate non-equal result. 

JS - Jump if signed 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 0 1 0 0 0 0 0 1 0 target 

 



 

 

Notation: 

JS target 

Description: 

Jump to target location given by an operand register flags indicate signed result. 

JNS - Jump if not signed 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 0 1 1 0 0 0 0 1 0 target 

 

Notation: 

JNS target 

Description: 

Jump to target location given by an operand if register flags indicate non-signed result. 

JXX1 - Unknown conditional jump 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 0 1 1 1 1 0 0 1 0 target 

 

Notation: 

JXX1 target 

Description: 

Perform conditional jump based on some unknown condition. 

WAIT1 - Wait / perform coprocessor op 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 0 1 1 0 1 0 0 0 1 target 

 

Notation: 

WAIT1 

Description: 

Wait for some coprocessor result ? 

WAIT2 - Wait / perform coprocessor op 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 



 

 

1 0 0 0 1 1 0 1 1 0 0 0 target 

 

Notation: 

WAIT2 

Description: 

Wait for some coprocessor result ? 

0x09 opcodes (JE, JB, JAE, JBE, JNE, JNS, JS, JZS, WAIT) 

JE - Jump if equal 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 1 1 0 0 0 0 0 0 1 target 

 

Notation: 

JE target 

Description: 

Jump to target location given by an operand register flags indicate equal result. 

JB - Jump if below 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 1 1 0 0 0 0 1 0 0 target 

 

Notation: 

JB target 

Description: 

Jump to target location given by an operand if register flags indicate below result. 

JAE - Jump if above or equal 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 1 1 1 0 0 0 1 0 0 target 

 

Notation: 

JAE target 

Description: 



 

 

Jump to target location given by an operand if register flags indicate above or equal result. 

JBE - Jump if below or equal 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 1 1 0 0 0 0 1 1 1 target 

 

Notation: 

JBE target 

Description: 

Jump to target location given by an operand if register flags indicate below or equal result. 

JNE - Jump if not equal 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 1 1 1 0 0 0 0 0 1 target 

 

Notation: 

JNE target 

Description: 

Jump to target location given by an operand if register flags indicate a non-equal result. 

JNS - Jump if not signed 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 1 1 1 0 0 0 0 1 0 target 

 

Notation: 

JNS target 

Description: 

Jump to target location given by an operand if register flags indicate a non-signed result. 

JS - Jump if signed 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 1 1 0 0 0 0 0 1 0 target 

 

Notation: 

JS target 



 

 

Description: 

Jump to target location given by an operand if register flags indicate a signed result. 

JZS - Jump if zero or signed 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 1 1 0 0 0 0 0 1 1 target 

 

Notation: 

JZS target 

Description: 

Jump to target location given by an operand if register flags indicate a zero or signed result. 

JXX2 - Unknown conditional jump 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 1 1 0 1 1 0 1 0 0 target 

 

Notation: 

JXX2 target 

Description: 

Perform conditional jump based on some unknown condition. 

JXX3 - Unknown conditional jump 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 1 1 0 1 0 1 0 0 0 target 

 

Notation: 

JXX3 target 

Description: 

Perform conditional jump based on some unknown condition. 

WAIT3 - Wait / perform coprocessor op 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 1 1 1 1 0 0 0 0 1 target 

 

Notation: 



 

 

WAIT3 

Description: 

Wait for some coprocessor result ? 

WAIT4 - Wait / perform coprocessor op 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 1 1 1 0 1 1 0 0 0 target 

 

Notation: 

WAIT4 

Description: 

Wait for some coprocessor result ? 

0x0a opcodes (LD) 

LD - Load from memory 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 1 0 reg1 0 0 0 0 reg2 m imm 

 

Notation: 

LD reg1,[reg2+imm] 

Description: 

Load register operand reg1 with the content of a memory location denoted by register reg2 and an 

imm index. 

If reg2 field equals 0, bit m denotes whether access to DATA (bit value 0) or I/O space (bit value 1) 

memory region is made.  

LD - Load from memory 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 1 0 reg1 0 0 0 1 reg2 Imm 

 

Notation: 

LD reg1,[reg2],reg2+=#imm 

Description: 



 

 

Load register operand reg1 with the content of a memory location denoted by register reg2 and 

increment the content of reg2 by an immediate operand. 

0x0b opcodes (ST) 

ST - Store to memory 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 1 1 0 0 0 0 reg1 reg2 m Imm 

 

Notation: 

ST reg1,[reg2+imm] 

Description: 

Store the content of register operand reg1 to memory location denoted by register reg2 and an imm 

index. 

If reg2 field equals 0, bit m denotes whether access to DATA (bit value 0) or I/O space (bit value 1) 

memory region is made.  

ST - Store to memory location 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 1 1 0 0 0 1 reg1 reg2 Imm 

 

Notation: 

ST reg1,[reg2],reg2+=#imm 

Description: 

Store the content of register operand reg1 to memory location denoted by register reg2 and 

increment the content of reg2 by an immediate operand. 

0x0c opcodes (CMP) 

CMP - Compare register value  

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 0 0 0 0 reg 0 0 0 0 imm 

 

Notation: 

CMP reg,#imm 

Description: 



 

 

Compare register content with an immediate operand value. The operation sets register flags 

accordingly. 

0x0d opcodes (JMP, BITSRCH, SYNC, RPT) 

JMP - Jump to address 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 1 0 0 0 0 target hi 0 0 0 1 target lo 

 

Notation: 

JMP target 

Description: 

Unconditionally jump to target location given by an operand. 

BITSRCH - Search for bits 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 1 reg1 reg2 0 0 0 0 0 1 0 0 0 0 0 0 

 

Notation: 

BITSRCH TOPMOST reg1, reg2 

Description: 

Search for the first bit set to value 1 in reg2 starting from the topmost bit and store the found bit 

number in reg1. 

SYNC1 - Sync on / perform some coprocessor op 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

 

Notation: 

SYNC1 

Description: 

Synchronize on some coprocessor operation ? 

SYNC2 - Sync on / perform some coprocessor op 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 



 

 

 

Notation: 

SYNC2 

Description: 

Synchronize on some coprocessor operation ? 

RPT - Repeat 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n 

 

Notation: 

RPT n 

Description: 

Repeat execution of a next instruction n times. 

RPT - Repeat 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

 

Notation: 

RPT 16 

Description: 

Repeat execution of a next instruction 16 times. 

0x0e opcodes (MOV) 

MOV - Move value to register 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 0 reg imm 

 

Notation: 

MOV reg,#imm 

Description: 

Move 16-bit immediate operand to given register. 



 

 

0x0f opcodes (copAES, copTDES) 

copAES - AES operation 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Notation: 

copAES 

Description: 

Perform AES crypto coprocessor operation. 

copTDES - TDES operation 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Notation: 

copTDES 

Description: 

Perform TDES crypto coprocessor operation. 

Further work 

The conditional instructions are one of the first candidates for any further work aimed at the 

improvement of the correctness of the presented instruction's set and SlimCORE disassembler tool's 

operation. 

The reverse engineering of these instructions requires acquiring information about actual conditions 

(register flags) that are used for a decision about a given conditional jump. This in particular includes 

information about S (signed result) and C (borrow / carry) conditions. 

The operation of the conditional jump instructions based on the above conditions can be reverse 

engineered with the use of instruction sequences influencing these conditions (register flags). This in 

particular includes CMP, ADD and SUB instructions: 

 JS - jump if signed 
MOV r1,#0001 

MOV r2,#0002 

SUB r1,r1,r2,#0000 

JS label 

 JNS - jump if not signed 
MOV r1,#0001 

MOV r2,#0002 

SUB r1,r2,r1,#0000 



 

 

JNS label 

 JC - jump if carry 
MOV r1,#0001 

MOV r2,#0002 

SUB r1,r1,r2,#0000 

JC label 

 

MOV r1,#ffff 

MOV r2,#ffff 

movhi r1,r2<<16 

add r1,r1,r0,#0001 

JC label 

 JNC - jump if not carry 
MOV r1,#0001 

MOV r2,#0002 

SUB r1,r2,r1,#0000 

JNC label 

 

MOV r1,#0001 

MOV r2,#0002 

add r1,r1,r0,#0000 

JNC label 

 
For all of the above instruction sequence, the jump should be taken only if a given target condition is 
met. The problem with such an approach is that one needs to be careful about conditional jumps 
that may take multiple conditions into account (carry and zero, signed and zero). For this reason, an 
observation for a signed an zero results need to be done as well (similarly to the case of signed and 
carry result, for which the conditions can be distinguished as jump for carry will take place also for 
non-signed results). 
 
Additionally, opcodes of conditional jump instructions should be also inspected as in most CPU 
architectures, a target condition is encoded with the use of a dedicated bit field within the 
instruction opcode. 

SlimCORE FIRMWARE 
In STi7111 environment, SlimCore runs firmware code implementing access to all crypto related 

functionality of TKD core (main crypto core of the SoC). 

Prior to running the firmware code it is loaded into the memory space of the SlimCORE processor. 

The loading process is implemented by the sttkdma_core_user.ko device driver and its 

st_tkdma_loader subroutine in particular (Fig. 8). 



 

 

 

Fig. 8 SlimCORE firmware loading code. 

Both data and code sections for the firmware are loaded. The data section usually starts at 0x4000 

offset relative to the chip base address. Instruction opcodes start at offset 0x6000. These offsets can 

be obtained from the implementation of st_tkdma_check_fw subroutine (Fig. 9). 

 

Fig. 9 SlimCORE firmware offsets in chipset memory space. 

Locating firmware code and data sections 

Inspection of the sttkdma_core_user.ko device driver and its st_tkdma_loader 

subroutine is only one of the ways to locate4 data corresponding to SlimCORE firmware sections. 

Data bytes corresponding to firmware code and data sections can be also successfully located by 

inspecting the code of the following firmware checking subroutines: 

 st_tkdma_check_fw (information about code start, code end and data start) 
 st_tkdma_loader_checksum (information about code start, code size, data start and 

data size) 
Below, two other ways are described to achieve this. 

                                                           
4
 and dump the contents of both data and code sections of the firmware. 



 

 

Magic string and NOP instruction 

We have observed that a code section for the firmware starts just behind the HAL_INT_NAME 

symbol of sttkdma_core_user.ko device driver (Fig. 10). 

 

Fig. 10 Firmware code location and a magic string. 

This symbol holds a constant 32-bit value of 0x00534552, which corresponds to "RES" string.  

Additionally, we have observed that for both old (STTKDMA-REL_3.1.6) and new (STTKDMA-

REL_3.9.2 ) firmware versions, firmware code sequence started with the following instructions: 

l_0000  0x00200000   add r0,r0,r0,#0000 

  0001  0x00200000   add r0,r0,r0,#0000 

  0002  0x00d00080   sync 

The above observations can be used to easily locate the start of a firmware code section in 

sttkdma_core_user.ko device driver. All that is needed to accomplish that is to find a first 

occurrence of two 32-bit integer values in it (a magic string 0x00534552 and nop5 instruction 

0x00200000). 

The end of a code section can be located by exploiting an observation that it always ends with a 

return from a subroutine instruction and is immediately followed by a firmware data section (its first 

word equal to 0): 

0x00840d00   jmp r13  ;jmp to link register (subroutine 

                            return address) 

0x00000000    ;firmware data section start 

The method described above to locate SlimCORE firmware code and data sections in 

sttkdma_core_user.ko device driver file is implemented in our SCDisasm tool. 

                                                           
5
 add r0,r0,r0,#0000 can be considered as an equivalent of a nop instruction taking into account that 

r0 is a zero register. 



 

 

Kernel symbols 

In some cases, the file of sttkdma_core_user.ko device driver might not be immediately 

available as part of the main root FS file system distribution6. 

For such cases, the image of a device driver along the code of all subroutines necessary to locate 

SlimCORE firmware need to be obtained from kernel memory by the means of a /proc filesystem. 

The /proc/modules file contains information about dynamically loaded kernel modules, their 

addresses and sizes. It can be used to obtain the kernel address where sttkdma_core_user.ko 

device driver was loaded: 

sttkdma_core_user 34384 6 

stdrmcrypto_ioctl,stdrmcrypto_core_user,sttkdma_ioctl_local,rfs_sec,nand_crypt,adb_tkdma_ioctl

, Live 0x81931280 (P) 

The /proc/kallsyms file contains information about kernel symbols such as those of 

dynamically loaded kernel modules: 

81937494 d HAL_INT_NAME   [sttkdma_core_user] 

81932c60 T STTKDMA_Term   [sttkdma_core_user] 

81932b00 T STTKDMA_ConfigureTK  [sttkdma_core_user] 

819346c0 t sttkdmaHal_GetNonce  [sttkdma_core_user] 

8192b380 u STAPLER_InterruptMake  [sttkdma_core_user] 

81934080 t sttkdmaHal_ProcessCommand [sttkdma_core_user] 

819392cc b sttkdma_ControlBlock_p [sttkdma_core_user] 

81933600 T STTKDMA_DecryptKey  [sttkdma_core_user] 

81933480 T STTKDMA_GetCounter  [sttkdma_core_user] 

81934e20 t sttkdmaHal_configuretk [sttkdma_core_user] 

81933360 T STTKDMA_ReadPublicID  [sttkdma_core_user] 

... 

819357a0 t st_tkdma_loader_checksum [sttkdma_core_user]  

... 

The above information can be used to dynamically extract firmware data and code sections directly 

from the kernel memory.  

Firmware architecture 

SlimCORE firmware is responsible for direct access to and interaction with a TKD Crypto core 

component of STi7111 SoC. The firmware operation is controlled from within the 

sttkdma_core_user.ko device driver through an API interface (Fig. 11). 

The API interface is implemented by the means of STK commands and their arguments. They are 

written to dedicated firmware data locations (0x401c STK cmd, 0x4020-0x402c STK cmd arguments) 

to trigger proper command dispatch. 

                                                           
6
 this was the case for ITI-2849ST and ITI-2850ST set-top-boxes. The sttkdma_core_user.ko device driver 

file was available as part of ADB loader partition (ADB Loader v7 SSU image, which was successfully decrypted 
by the means of a custom Hitachi SH4 emulator with I/O proxy [11]). 



 

 

SlimCore firmware processes STK commands and issues corresponding TKD commands directly to 

TKD Crypto core. The results of STK commands (if any) are written back to the arguments buffer. 

 

Fig. 11 SlimCORE firmware architecture (associated components and APIs). 

 

STK commands are issued as a response to IOCTL calls received by sttkdma_ioctl_local.ko 

device driver from user space library by the means of special device files7. 

TKD Crypto core 

TKD Crypto core is the main core of STi7111 SoC responsible for all cryptographic and key storage 
related operations. The core is controlled by the means of 32-bit TKD commands and associated 
arguments being sent to an I/O port. 
 
TKD Crypto Core supports the following ciphers: 

 TDES_ECB_128 
 AES_ECB_128 
 AES_CBC_128 
 AES_CTR_128 

 
Generic format of a TKD command is presented on Fig. 12 . 
 

                                                           
7
 /tmp/sttkdma_ioctl, /tmp/sttkdma_core for ITI-2849ST and ITI-2850ST set-top-boxes. 



 

 

 
 

Fig. 12 Generic TKD command format. 

TKD commands make it possible to store a given source value to a given target key memory location. 
Depending on the chip configuration, the source value can be encrypted or decrypted8 with the use 
of a given key. As a result, TKD commands provide means for a secure loading of secret key values 
into the chip.  
 
The following TKD commands are usually at the base of an implementation of an arbitrary PayTV CAS 
with chipset pairing functionality: 

 Setting encrypted Control Word Pairing Key (CWPK) 

- TKD CMD 0x00ff0000 

- Interpreted as decryption (always) of register input (0xff) with SCK key (0x00) and 
storing the result at a key slot 0x00 

 Setting encrypted Control Word (CW) 

- TKD CMD 0x20ff0001 

- Interpreted as decryption (0x01) of register input (0xff) with CWPK key (key slot 
0x00) and storing the result at a key slot 0x20. 

 
It's worth to mention that for targets in the range of 0x00-0x04, there is no output provided as a 
result of a given TKD command execution (secret pairing key locations). Such an output is however 
provided for targets 0x05-0x0f. 
 
Beside making it possible to load encrypted key values to the chip, TKD crypto core also implements 
commands facilitating crypto DMA operations. Their generic format for standard DMA (making use 
of user provided crypto keys) is presented on  

Fig. 13. 

                                                           
8
 more details pertaining to decryption / encryption bit of TKD command and observed peculiarities can be 

found in APPENDIX A. 



 

 

 
 

Fig. 13 Lower 16 bits of a TKD command for standard DMA operation. 

TKD command corresponding to DMA crypto transfer making use of the SCK key is presented on Fig. 

14. 

 

Fig. 14 Lower 16 bits of a TKD command for SCK DMA operation. 

The higher 16 bits (bits 16-31) of the above crypto DMA commands are set to the value 0xffff. 

Finally, TKD Crypto core maintains dedicated memory locations for arbitrary key storage: 

 0x3100 - descrambling keys (keys 0-31, key size 0x10) 
 0x3420 - crypto DMA / custom user keys (keys 0-7 corresponding to given DMA channel id, 

key size 0x10). 
 
Memory locations corresponding to descrambler keys are not readable, while the area 
corresponding to DMA / custom user keys can be read by user code. Key at index N corresponds to 
DMA channel N. 
 
For CBC and CTR based ciphers, the following I/O register locations are also used: 

 0x3004-0x3010 - CBC IV vector 
 0x3014-0x3020 - CTR IV vector 

Commands and configuration variables 

There are more than a dozen of STK commands implemented by the sttkdma_core_user.ko 

device driver, which correspond to different TKD commands issued to TKD Crypto core. The mapping 

of STK commands to their TKD counterparts is shown in Table 2. 

ASSOCIATED NAME9 STK CMD 
LOCATION10 

STK CMD TKD COMMAND 

                                                           
9
 these names do not necessarily correspond to the sttkdma_core_user.ko device driver symbols, but 

are all the symbols that could be associated with given STK commands through other device drivers and user 
space libraries. 



 

 

STTKDMA_reset 0x4068 0x00  
 0x406c 0x01 01ff8101 
setCWPK / 

set_descrambling_internalkeys 

0x4070 0x02 00ff8101 

STTKDMA_DecryptKey / 

scdc_ImplModifyKeyIndex / 

set_protected_descramblingkey 

0x4074 idx11<<8 | 0x03 20ff0001 + idx<<24  

 0x4078 idx<<8 | 0x04 10ff0101 + idx<<24 
getPublicID 0x407c 0x05  
 0x4080 idx<<8 | 0x06 20ff0010 + idx<<24 
 0x4084 idx<<8 | 0x80 10ff8001 + idx<<24 
 0x4088 0x10 03ff0001 
 0x408c 0x11 04000001 
sttkdmaHal_GetNonce 0x4090 0x12 ffff0401 
resetAES_NOT_TDES  0x13  
 0x4094 0x20 02ff8101 
 0x4098 0x21 80ff0203 
 0x409c 0x22 81ff0203 
 0x40a0 0x23 82ff0203 
sttkdmaHal_GetSWReg 0x40a4 0x24 83ff0203 
STTKDMA_GetCounter 0x4068 0x40  
STTKDMA_NOP 0x4068 0x41  

 
Table 2 The mapping of STK commands to TKD commands. 

SlimCORE firmware reads STK commands and their optional arguments from the following SlimCORE 

data section locations: 

0x401C   STK CMD ID 

0x4020-0x402c STK CMD buffer for arguments and output result 

Additionally, SlimCORE firmware makes an active use of several other data section locations for 

storage of various configuration and state settings. This is illustrated in Table 3. 

FIRMWARE DATA SECTION OFFSET VARIABLE DESCRIPTION 

0x4004 DMA CONFIG 
 0x01 container DMA 
 0x02 decrypt 
 0x04-0x10 channel id (0-7) 
 0x20 AES algorithm 
 0x40 SCK dma 
 0x80 custom DMA cmd 
 0x100 CBC mode 
 0x200 CTR mode 
 0x400 IV seed 
 0x800 swap_halves 
 0x1000 IV init? 
 0x2000 swap_bytes 

0x4008 DMA source (aligned to 0x20) 

                                                                                                                                                                                     
10

 in SlimCORE firmware. 
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 idx denotes key index. 



 

 

0x400c DMA destination (aligned to 0x20) 

0x4010 DMA size (in 32-bit words) 

0x4014 part of STK command 

0x4018 TK CONFIG 

0x401C STK cmd 

0x4020-0x402c STK cmd buffer (arguments / result) 

0x4030 Customer mode 

0x4040 state flag indicating STK cmd 0x01 was executed 
(checked by STK cmd 0x04) 

0x4044 state flag indicating STK cmd 0x02 was executed 
(checked by STK cmds 0x03, 0x10 and 0x11) 

0x4048 state flag indicating STK cmd 0x05 was executed 
(checked by STK cmds 0x01, 0x02, 0x04 and 
0x80) 
 
TKD operation mode: 

 0x01 tkd is active 
 0x02 dma is active 

0x404c state flag indicating STK cmd 0x10 was executed 
(checked by STK cmd 0x03) 

0x4050 state flag indicating STK cmd 0x11 was executed 
(checked by STK cmd 0x12) 

0x4054 state flag indicating STK cmd 0x20 was executed 
(checked by STK cmds 0x21, 0x22, 0x23 and 
0x24) 

0x40b0 SW counter 

0x40b4 number of packets for DMA transfer 

0x4120 bit idx of current stack frame 

0x4124 bit idx of next stack frame 
 

Table 3 SlimCORE firmware configuration / state variables. 



 

 

Firmware operation 

Generic schema of a SlimCORE firmware operation is illustrated on Fig. 15. 

 

Fig. 15 SlimCORE firmware operation (STTKDMA-REL_3.1.6). 

Execution of a SlimCORE firmware starts at instruction idx 0. First, some FW data locations are 

initialized to 0 such as a counter variable: 

  000b  0x00b0002c   st r0,[r0,002c]  ;counter = 0 

  000c  0x00e60010   mov r6,#0010   ;memory idx of 0x4040 addr 

  000d  0x00 

d00090   sync 

  000e  0x00d00009   rpt 9    ;loop counter=9 

  000f  0x00b10601   st r0,[r6],r6+=#0001 ;store 0 to [0x4040-0x4060] 

After that, chip customer mode register is read and a corresponding data section variable is 

initialized with a new value: 

  0010  0x00a5008a   ld r5,[r0,008a] // 0x5e28 ;chip customer mode register 

  0011  0x00e40040   mov r4,#0040 

  0012  0x00735c80   and r3,r5,0x0f  ;low nibble of chip customer mode 

  0013  0x00c03005   cmp r3,#05 

  0014  0x00981026   je l_0026                 ;-> chip customer mode == 0x05 

  0015  0x00c03002   cmp r3,#02 

  0016  0x00981028   je l_0028                 ;-> chip customer mode == 0x02 

  0017  0x00c03006   cmp r3,#06 

  0018  0x0098102a   je l_002a                 ;-> chip customer mode == 0x06 

  0019  0x00c0300b   cmp r3,#0b 



 

 

  001a  0x0098102c   je l_002c                 ;-> chip customer mode == 0x0b 

  001b  0x00c0300f   cmp r3,#0f 

  001c  0x0098102e   je l_002e                 ;-> chip customer mode == 0x0f 

  001d  0x00c03003   cmp r3,#03 

  001e  0x00981030   je l_0030                 ;-> chip customer mode == 0x03 

  001f  0x00c03007   cmp r3,#07 

  0020  0x00981032   je l_0032                 ;-> chip customer mode == 0x07 

  0021  0x00c03008   cmp r3,#08 

  0022  0x00981034   je l_0034                 ;-> chip customer mode == 0x08 

  0023  0x00c0300c   cmp r3,#0c 

  0024  0x00981036   je l_0036                 ;-> chip customer mode == 0x0c 

  0025  0x00d00318   jmp l_0038 

 

l_0026  0x00e40002   mov r4,#0002              ;05 -> 0x02 as customer mode 

  0027  0x00d00318   jmp l_0038 

 

l_0028  0x00e40004   mov r4,#0004              ;02 -> 0x04 as customer mode 

  0029  0x00d00318   jmp l_0038 

l_002a  0x00e40005   mov r4,#0005              ;06 -> 0x05 as customer mode 

  002b  0x00d00318   jmp l_0038 

l_002c  0x00e40008   mov r4,#0008              ;0b -> 0x08 as customer mode 

  002d  0x00d00318   jmp l_0038 

l_002e  0x00e40009   mov r4,#0009              ;0f -> 0x09 as customer mode 

  002f  0x00d00318   jmp l_0038 

l_0030  0x00e40010   mov r4,#0010              ;03 -> 0x10 as customer mode 

  0031  0x00d00318   jmp l_0038 

l_0032  0x00e40011   mov r4,#0011              ;07 -> 0x11 as customer mode 

  0033  0x00d00318   jmp l_0038 

l_0034  0x00e40020   mov r4,#0020              ;08 -> 0x20 as customer mode 

  0035  0x00d00318   jmp l_0038 

l_0036  0x00e40021   mov r4,#0021              ;0c -> 0x21 as customer mode 

  0037  0x00d00090   sync 

l_0038  0x00b0400c   st r4,[r0,000c] // 0x4030 ;store customer mode 

Next, a subroutine call is made to initialize TKD Crypto key storage to default key values12: 

  0039  0x00ed003b   mov r13,#003b  ;subroutine return addr 

  003a  0x008c04e1   j l_04e1   ;init all of the keys (CWPK, CWs) 

  003b  0x00e40312   mov r4,#0312 

The call above is made with the use of a J (jump to target location) instruction. Prior to it, the LINK 

register (r13) is loaded with a subroutine return value indicating the instruction following the jump. 

Finally, dispatch structures corresponding to several semi-threads implemented by the firmware 

code are initialized. As part of the initialization procedure, memory for threads' saved context gets 

allocated and an address of a dispatch address for a given thread is placed into it: 

  0050  0x00e60080   mov r6,#0080     ;base addr of temp stack frames 

  0051  0x00e700d0   mov r7,#00d0 

  0052  0x00e4024f   mov r4,#024f     ;thread code location (dispatch handler) 

  0053  0x00e50008   mov r5,#0008     ;thread dispatch bitmask=0x08 

  0054  0x00d55040   bitsrch topmost,r5,r5 ;thread dispatch idx=3 (bit# of 0x08) 

  0055  0x00155004   shl r5,r5,#0004    ;thread dispatch idx*16=0x30 

  0056  0x002e5700   add r14,r5,r7,#0000   ;0xd0+0x30=0x100 
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  0057  0x00255600   add r5,r5,r6,#0000    ;0x80+0x30=0xb0 

  0058  0x00d00090   sync 

  0059  0x00b0450d   st r4,[r5,000d]    ;[0xbd] = 0x024f (thread handler) 

  005a  0x00b0e50e   st r14,[r5,000e]      ;[0xbe] = 0x100  (thread stack frame) 

  005b  0x00d0000d   rpt d      ;init saved registers (r2-r14) to 0 

  005c  0x00b10501   st r0,[r5],r5+=#0001  ;[0xb0-0xbc] = 0 

In SlimCORE firmware, different threads are frequently represented by consecutive bits of a bitmask 

(thread idx 0 is represented by bit value 0x01, thread idx 1 is denoted by bit value 0x02 and so on). 

This is also the case for the above (thread dispatch bitmask 0x08 indicates thread dispatch idx 0x03). 

Semi-threads dispatching 

SlimCORE firmware makes use of 4 semi-threads (dispatch indices 0-3) dedicated for the handling of 

TKD commands, crypto DMA and firmware initialization procedure among others. 

There are two data section variables that indicate current's thread to execute (dispatch): 

 0x4120 - current thread bitmask idx 

 0x4124 - next thread bitmask idx 

Upon completing the initialization code, main dispatch subroutine responsible for semi-threads 

execution is invoked. This subroutine first stores execution context of a currently executing semi-

thread: 

  0512  0x00a10048   ld r1,[r0,0048] // 0x4120    ;current thread's bitmask idx 

  0513  0x00d11040   bitsrch topmost,r1,r1    ;current thread's dispatch idx 

  0514  0x00111004   shl r1,r1,#0004     ;thread dispatch idx*16 

  0515  0x00ea0080   mov r10,#0080     ;base addr of temp stack frames 

  0516  0x00211a00   add r1,r1,r10,#0000    ;r1=thread's stack frame 

  ... 

  0519  0x00b02102   st r2,[r1,0002]     ;save r2 

  051a  0x00b03103   st r3,[r1,0003]      ;save r3 

  051b  0x00b04104   st r4,[r1,0004]      ;save r4 

  051c  0x00b05105   st r5,[r1,0005]      ;save r5 

  051d  0x00b06106   st r6,[r1,0006]      ;save r6 

  051e  0x00b07107   st r7,[r1,0007]      ;save r7 

  051f  0x00b08108   st r8,[r1,0008]      ;save r8 

  0520  0x00b09109   st r9,[r1,0009]      ;save r9 

  0521  0x00b0a10a   st r10,[r1,000a]      ;save r10 

  0522  0x00b0b10b   st r11,[r1,000b]      ;save r11 

  0523  0x00b0c10c   st r12,[r1,000c]      ;save r12 

  0524  0x00b0d10d   st r13,[r1,000d]      ;save r13 (thread's ret addr) 

  ... 

  0526  0x00b0e10e   st r14,[r1,000e]     ;save r14 (thread's stack) 

The dispatch of different threads is done by rotating the current thread's bitmask idx variable over a 

bit field of 4 bits (firmware data section at offset 0x4124): 

l_0581  0x00a40049   ld r4,[r0,0049] // 0x4124  ;current thread bitmask idx 

  ... 

l_0585  0x00404300   tst r4,00 

  0586  0x00881589   jz l_0589 

  0587  0x00b04048   st r4,[r0,0048] // 0x4120       ;next thread bitmask idx 

  ... 

l_0589  0x00c04010   cmp r4,#10    ;is bitmask idx == 0x10 ? 



 

 

  058a  0x009c158d   jne,s l_058d    ;-> no 

  058b  0x00e40001   mov r4,#0001    ;yes, start from bitmask 0x01 

  058c  0x00d0581e   jmp l_058e 

l_058d  0x00144001   shl r4,r4,#0001   ;shift bitmask idx by 1 to 

        ;the left 

  ... 

  058f  0x00b04049   st r4,[r0,0049] // 0x4124  ;store new thread bitmask idx 

The effect of the above becomes visible when thread's execution context gets restored by the main 

threads dispatching subroutine: 

  05a2  0x00a20048   ld r2,[r0,0048] // 0x4120  ;next thread's bitmask idx 

  05a3  0x00d22040   bitsrch topmost,r2,r2  ;next thread's dispatch idx 

  05a4  0x00122004   shl r2,r2,#0004   ;thread idx*16 

  05a5  0x00ea0080   mov r10,#0080   ;base addr of tmp stack frames 

  05a6  0x00222a00   add r2,r2,r10,#0000  ;r2=thread's stack frame 

  05a7  0x00d00090   sync 

  05a8  0x00ae020e   ld r14,[r2,000e] // 0x0038  ;load r14 (thread's stack) 

  05a9  0x00ad020d   ld r13,[r2,000d] // 0x0034 ;load r13 (thread's ret addr) 

  05aa  0x00ac020c   ld r12,[r2,000c] // 0x0030 ;load r12 

  05ab  0x00ab020b   ld r11,[r2,000b] // 0x002c ;load r11 

  05ac  0x00aa020a   ld r10,[r2,000a] // 0x0028 ;load r10 

  05ad  0x00a90209   ld r9,[r2,0009] // 0x0024  ;load r9 

  05ae  0x00a80208   ld r8,[r2,0008] // 0x0020  ;load r8 

  05af  0x00a70207   ld r7,[r2,0007] // 0x001c  ;load r7 

  05b0  0x00a60206   ld r6,[r2,0006] // 0x0018  ;load r6 

  05b1  0x00a50205   ld r5,[r2,0005] // 0x0014  ;load r5 

  05b2  0x00a40204   ld r4,[r2,0004] // 0x0010  ;load r4 

  05b3  0x00a30203   ld r3,[r2,0003] // 0x000c  ;load r3 

  05b4  0x00a10201   ld r1,[r2,0001] // 0x0004  ;load r1 

  05b5  0x00a20202   ld r2,[r2,0002] // 0x0008  ;load r2 

  05b6  0x00840d00   jmp r13    ;continue execution in a new 

        ;thread context 

STK commands' groups 

The thread responsible for main STK command dispatch makes sure that certain commands are 

executed following an execution of some other commands. This state-machine is implemented by 

the means of state variables 0x4040-0x4054 (Table 3). This information makes it possible to 

associate certain TKD commands with each other (select their groups). The meaning of the 

commands can be also discovered upon the knowledge of the operation of a dependant commands  

(a prior command required to be executed). The results of such a grouping and a discovery of some 

unknown commands meaning is illustrated in Table 4. 

COMMAND 
GROUP 

STK 
COMMAND 

TKD  
COMMAND 

DESCRIPTION 

CWPK1 0x01 01ff8101 Decrypt CWPK input with SCK key (key 
location 0x8113) and store it at key location 
1 

idx<<8 | 0x04 10ff0101 + idx<<24 Decrypt key input with CWPK key at index 1 
and store it at key location 10+idx (crypto 
DMA / AES keys) 
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 we verified that correct CWPK key at index 0 can be successfully set for the following TKD commands: 
0x00ff8101, 0x00ff0101 and 0x00ff0001. Thus, we conclude that location 0x81 corresponds to SCK key. 



 

 

CWPK0 0x02 00ff8101 Decrypt CWPK input with SCK key (key 
location 0x81) and store it at key location 0 

idx<<8 | 0x03 20ff0001 + idx<<24  Decrypt key input with CWPK key at index 0 
and store it at key location 20+idx 
(descrambling keys) 

0x10 03ff0001 Decrypt key input with CWPK key at index 0 
and store it at key location 3 

0x11 04000001 Decrypt CWPK key at index 0 with itself and 
store it at key location 4 

TKD 0x05  Get public ID 

0x01 01ff8101 Decrypt CWPK input with SCK key (key 
location 0x81) and store it at key location 1 

0x02 00ff8101 Decrypt CWPK input with SCK key (key 
location 0x81) and store it at key location 0 

idx<<8 | 0x04 10ff0101 + idx<<24 Decrypt key input with CWPK key at index 1 
and store it at key location 10+idx (crypto 
DMA / AES keys) 

idx<<8 | 0x80 10ff8001 + idx<<24 Decrypt key input with key at location 0x80 
and store it at key location 10+idx (crypto 
DMA / AES keys) 

UNKNOWN 0x10 03ff0001 Decrypt key input with CWPK key at index 0 
and store it at key location 3 

idx<<8 | 0x03 20ff0001 + idx<<24  Decrypt key input with CWPK key at index 0 
and store it at key location 20+idx 
(descrambling keys) 

NONCE 0x11 04000001 Decrypt CWPK key at index 0 with itself and 
store it at key location 4 (NONCE) 

0x12 ffff0401 Decrypt key input with key at index 4 
(NONCE) 

SWREGS 0x20 02ff8101 Decrypt key input with SCK key (key 
location 0x81) and store it at key location 2 

0x21 80ff0203 ?? 

0x22 81ff0203 ?? 

0x23 82ff0203 ?? 

0x24 83ff0203 ?? 
 

Table 4 STK commands groups and their description. 

Core routines related to CWPK and CWs handling 

Below, a more detailed description pertaining to keys handling related functionality implemented by 

the SlimCORE firmware is presented. This functionality is implemented by TKD commands handling 

thread. 

Key initialization routine 

Key initialization subroutine is called at the time of a firmware startup. At first, customer mode is 
checked for bit 0x40. If this bit is set, no keys are being initialized: 

######################## 

SUB l_04e1 

init keys 

######################## 



 

 

l_04e1  0x000c0d3c   mov r12,r13 

  04e2  0x00a7000c   ld r7,[r0,000c] //    ;customer mode 

  04e3  0x00407040   tst r7,40 

  04e4  0x009c14fc   jne,s l_04fc     ;-> jump to the end 

In the next step, register r9 is set to the value 0 to indicate TDES cipher algorithm (a default cipher). 
If bit 0x02 of customer mode variable is set, the default cipher is changed to the value 1 (AES 
algorithm): 

  04e5  0x0009003c   mov r9,r0     ;r9 = 0 (TDES) 

  04e6  0x00e10001   mov r1,#0001 

  04e7  0x00407002   tst r7,02 

  04e8  0x008814ea   jz l_04ea 

  04e9  0x0009013c   mov r9,r1     ;r9 = 1 (AES) 

Following that, Control Words Pairing Key (CWPK) is initialized. This is accomplished by invoking a 
single crypto key initialization subroutine (location 04fd) with register r8 indicating TKD Crypto core 
command to execute and r9 denoting the cipher. For CWPK key the TKD command is set to 
0x00ff8101 value: 

l_04ea  0x00a8001c   ld r8,[r0,001c] // 0x4070 = 0x00ff8101        ;setCWPK 

  04eb  0x00ed04ed   mov r13,#04ed                                 ;sub ret addr 

  04ec  0x008c04fd   j l_04fd                                      ;init single key 

Next, customer mode is checked for  bit value 0x20. If this bit is set, additional (pairing?) key 
initialization takes place with the use of a 0x03ff0001 TKD command: 

  04ed  0x00407020   tst r7,20 

  04ee  0x008814f2   jz l_04f2 

  04ef  0x00a80022   ld r8,[r0,0022] // 0x4088 = 0x03ff0001         ;TKD CMD 

  04f0  0x00ed04f2   mov r13,#04f2 

  04f1  0x008c04fd   j l_04fd 

Finally, all descrambling (Control Words) keys are initialized in a loop: 

l_04f2  0x00e60032   mov r6,#0032                               ;number of CWs 

  04f3  0x00e50020   mov r5,#0020         ;base for TKD cmd 

l_04f4  0x00a8001d   ld r8,[r0,001d] // 0x4074 = 0x20ff0001 

  04f5  0x00785118   mov r8,r5&0xff<<24        ;set highest byte 

                                                                ;in TKD cmd 

  04f6  0x00ed04f8   mov r13,#04f8                              ;sub return addr 

  04f7  0x008c04fd   j l_04fd                                   ;init single key        

  04f8  0x00255001   add r5,r5,r0,#0001                         ;inc key idx 

  ... 

  04fa  0x00366001   sub r6,r6,r0,#0001                         ;dec loop counter 

  04fb  0x008c14f4   jne l_04f4                                 ;-> loop jump if 

                                                                ;   counter not 0 

The loop above initializes 0x32 descrambling keys (CWs). 

Initialization of a single crypto key is implemented by the following subroutine: 

######################## 

SUB l_04fd 

initialization of a single crypto key 

INPUT: r9 = 1 for AES, = 0 for TDES 

       r8 = TKD command 

######################## 

l_04fd  0x00409900   tst r9,00                               ;AES ? 

  04fe  0x008c1506   jne l_0506                              ;-> jump for AES 

 



 

 

  04ff  0x00fa4000   copTDES                                 ;handle TDES 

  0500  0x000f083c   mov r15,r8                              ;TKD CMD -> OUT 

  0501  0x008e1501   wait1 

  0502  0x00d00004   rpt 4 

  0503  0x000f003c   mov r15,r0                              ;rpt 4 r0 -> OUT 

  0504  0x008e1504   wait1 

  0505  0x008c050c   j l_050c 

 

l_0506  0x00f54000   copAES                                  ;handle AES 

  0507  0x000f083c   mov r15,r8                              ;TKD CMD -> OUT 

  0508  0x008d8508   wait2 

  0509  0x00d00004   rpt 4 

  050a  0x00af0000   ld r15,[r0,0000] // 0x4000 = 0x00000000 ;rpt 4 [0x4000] -> OUT 

  050b  0x008d850b   wait2 

 

l_050c  0x00d00004   rpt 4       ;handle output result 

  050d  0x00000f3c   mov r0,r15                              ;rpt 4 r0 < IN 

  050e  0x00840d00   jmp r13  

Initialization of a single crypto key is conducted in a similar way for both AES and TDES cipher. First, a 

coprocessor instruction corresponding to an argument in register r9 is executed indicating target 

crypto operation to perform. Then TKD command is sent to TKD core (OUT operation) through 

register r15. For TDES, it is followed by 4 consecutive out operations of 0 value. For AES, the 4 

consecutive out operations are conducted with respect to the contents of firmware location 0x4000. 

The result of the key loading operation is always ignored (moved to r0). 

getPublicID implementation 

The getPublicID code has the following implementation: 

l_01a1  0x00a5008b   ld r5,[r0,008b] // 0x5e2c                ;chip id 

  01a2  0x00a9001f   ld r9,[r0,001f] // 0x407c = 0x00000000   ;TKD CMD = 0 

  01a3  0x00b05008   st r5,[r0,0008] // 0x4020 = 0x00000000   ;DATA[0] = chip id 

  01a4  0x00b00009   st r0,[r0,0009] // 0x4024 = 0x00000000   ;DATA[4] = 0 

  01a5  0x00b0000a   st r0,[r0,000a] // 0x4028 = 0x00000000   ;DATA[8] = 0 

  01a6  0x00b0000b   st r0,[r0,000b] // 0x402c = 0x00000000   ;DATA[c] = 0 

The hardware value indicating chip ID is stored into the first word of STK command arguments 

buffer. It is followed by 3 consecutive store operations of 0 value. 

decryptKey implementation 

The decryptKey code sequence is responsible for loading encrypted crypto key values such as 

CWPK and CWs into TKD Crypto core. The code for this functionality is implemented as part of STK 

commands handling thread. Below, a more detailed description of TDES based implementation is 

given: 

l_0206  0x00fa4000   copTDES                           ;TDES handling 

  0207  0x000f093c   mov r15,r9                        ;TKD CMD -> OUT 

  0208  0x008e1208   wait1 

 

In the beginning, the TKD core is configured to operate in TDES mode. Then TKD command is sent to 

TKD core (OUT operation) through register r15. For descrambling key at index idx, the TKD command 

has the value of: 



 

 

   0x20ff0001+(idx<<24) 

Finally, the encrypted key value contained in STK cmd buffer is sent to the TKD core. 

  0209  0x00af0008   ld r15,[r0,0008] // 0x4020        ;DATA[0] -> OUT 

  020a  0x00af0009   ld r15,[r0,0009] // 0x4024        ;DATA[4] -> OUT 

  020b  0x00af000a   ld r15,[r0,000a] // 0x4028        ;DATA[8] -> OUT 

  020c  0x00af000b   ld r15,[r0,000b] // 0x402c        ;DATA[c] -> OUT 

  020d  0x008e120d   wait1 

Next, register r10 indicating whether current TKD command has output is checked: 

  020e  0x00500a00   tst r10,r10                   ;does this command have output ? 

  020f  0x00881215   jz l_0215                     ;-> jump in case of no output 

If a command has output, it is simply read via register r15 and stored into STK cmd buffer (IN 

operation): 

  0210  0x00b0f008   st r15,[r0,0008] // 0x4020    ;DATA[0] <- IN 

  0211  0x00b0f009   st r15,[r0,0009] // 0x4024    ;DATA[4] <- IN 

  0212  0x00b0f00a   st r15,[r0,000a] // 0x4028    ;DATA[8] <- IN 

  0213  0x00b0f00b   st r15,[r0,000b] // 0x402c    ;DATA[c] <- IN 

  0214  0x00d02117   jmp l_0217 

If register r10 indicates no output, the result of a key loading operation is always ignored (moved to 

r0): 

l_0215  0x00d00004   rpt 4                       ;read output buffer, but ignore it 

  0216  0x00000f3c   mov r0,r15                  ;r0 <- IN 

For AES cipher, the sequence of instructions implementing decryptKey functionality is similar to 

the one of TDES cipher. There is however one difference. Following the OUT operation of a TKD 

command, there is a check for bit 0x08 of a firmware variable at 0x41c0 location: 

  01ed  0x00a30070   ld r3,[r0,0070] // 0x41c0 = 0x00000070 

  01ee  0x008d81ee   wait2 

  01ef  0x00703c23   tst r3,#00000008 

  01f0  0x008811f6   jz l_01f6 

If this bit is set, instead of sending user provided (from STK cmd buffer location) arguments to the 

chip, data from some I/O locations is used for that purpose: 

  01f1  0x00af0090   ld r15,[r0,0090] // 0x5e40 ;[0x5e40] -> OUT 

  01f2  0x00af0091   ld r15,[r0,0091] // 0x5e44 ;[0x5e44] -> OUT 

  01f3  0x00af0092   ld r15,[r0,0092] // 0x5e48 ;[0x5e48] -> OUT 

  01f4  0x00af0093   ld r15,[r0,0093] // 0x5e4c ;[0x5e4c] -> OUT 

setCWPK implementation 

The implementation of setCWPK makes use of the described above decryptKey functionality. 

For setCWPK, target TKD command is set to the value of 0x00ff8101. 

In Conax CAS environment, the value of CWPK key is passed to a set-top-box device by the means of 

a dedicated EMM message. We have observed that smartcard's response to it always starts with the 

same sequence of 6 bytes: 



 

 

    80 1b 40 19 01 17 

The response to EMM message contains a TLV value and UPDATE_KEY tag in particular. The latter 

embeds pairing information in a form of a public chip ID and an encrypted CWPK key. This is 

illustrated on Fig. 16. 

 

Fig. 16 A response to Conax CAS EMM message carrying chipset pairing information. 

ADB set-top-boxes additionally encrypt the received encrypted pairing key and store it in a local 

file14. This is most likely for the purpose of a quick STB startup (no need to wait for a reception of a 

pairing key over the broadcast stream).  

The additional encryption of CWPK should not be perceived in terms of a security mechanism 

though. This is primarily due to the following: 

 the EMM message containing CWPK key seems to be continuously broadcasted and it can be 

easily detected upon smartcard's response pattern, 

 in the environment of ADB set-top-boxes, the cpm_SecGetDecryptedKeyPtr function 

of libstd_cai_client_conax7.so library can be successfully used to obtain the 

original CWPK key. 

Crypto DMA handling 

While our reverse engineering efforts were primarily focused on SlimCORE firmware and its handling 

of CWPK and CW keys, some initial analysis of Crypto DMA functionality has been also conducted. 

As a result of this analysis, the following code sequences were discovered as being likely primarily 

responsible for crypto DMA transfer implementation (standard DMA case): 

1. Initialization of IV vector: 

l_02c7  0x00a10001   ld r1,[r0,0001] // 0x4004   ;DMA CONFIG 

  02c8  0x00711c2c   bitval r1,r1,#00001000      ;IV init ? 

  02c9  0x008812cf   jz l_02cf                   ;-> jump if no need to init IV 

  02ca  0x00b0deff   st r13,[r14,00ff]           ;temporary store r13 

  02cb  0x003ee001   sub r14,r14,r0,#0001 

  02cc  0x00ed02ce   mov r13,#02ce               ;subroutine return addr 

  02cd  0x008c04bb   j l_04bb                    ;initialization of IV ? 

  02ce  0x00ad1e01   ld r13,[r14,0001] // 0x0004 ;restore saved r13 
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 /mnt/flash/secure/7/0 file. 



 

 

The above sequence checks 0x1000 bit flag of a DMA CONFIG variable to see whether initialization 

vector15 IV was provided at the time of a DMA setup operation. If it exists, a call to 04bb subroutine 

is made where IV gets initialized. 

The called subroutine first checks whether target DMA channel in TKD DMA command is within the 

allowed range: 

l_04bb  0x00a1002e   ld r1,[r0,002e] // 0x40b8   ;TKD CMD 

  04bc  0x00d00090   sync 

  04bd  0x00721d08   shr r2,r1,0x08              ;DMA channel id+0x10 

  04be  0x00302010   sub r0,r2,r0,#0010          ;DMA channel id 

  04bf  0x009844e0   jb l_04e0                   ;-> jump to the end if < 0x10 

  04c0  0x00302018   sub r0,r2,r0,#0018 

  04c1  0x009c44e0   jae l_04e0                  ;-> jump to the end if >= 0x18 

For IV init, only channels 0 and 7 seem to be used: 

  04c2  0x00222001   add r2,r2,r0,#0001          ;r2 = in the range of 0x11 do 0x18 

  04c3  0x00302017   sub r0,r2,r0,#0017 

  04c4  0x008874c7   jz l_04c7                   ;-> jump if r2 == 0x17 

  04c5  0x00e20010   mov r2,#0010 

  04c6  0x00d00090   sync 

One of these channels is set in a target TKD DMA command. Additionally, its IV bit is cleared to 

indicate that IV has been configured and algorithm mode is set to ECB: 

l_04c7  0x00712108   mov r1,r2&0xff<<8 

  04c8  0x00710026   bitset r1,r0&0x01<<6        ;clear bit 0x40 (IV seed?) 

  04c9  0x00710041   mov r1,r0&0x03<<1           ;clear bits xxxxx00x TKD CMD 

Later on a check is made to see whether the IV is for AES or TDES algorithm and the actual 

initialization takes place: 

  04ca  0x00500300   tst r3,r3                   ;AES ? 

  04cb  0x009814d6   je l_04d6                   ;-> jump for TDES 

  04cc  0x009d84cc   wait4                       ;AES handling 

  04cd  0x00f54000   copAES 

  04ce  0x00d00090   sync 

  04cf  0x000f013c   mov r15,r1                  ;TKD CMD -> OUT 

  04d0  0x00d00004   rpt 4 

  04d1  0x000f003c   mov r15,r0                  ;rpt 4 r0 -> OUT 

  04d2  0x008d84d2   wait2 

  04d3  0x00d00004   rpt 4 

  04d4  0x00000f3c   mov r0,r15                  ;rpt 4 r0 <- IN 

  04d5  0x008c04e0   j l_04e0                    ;-> jump to the end 

The IV initialization implementation is a little bit confusing. It seems to be initializing the IV with the 

use of a target cipher (AES or TDES), but the actual value used for the IV is always 0. It could be that 

the IV seed in DMA CONFIG indicates that a default zero vector for the IV should be used. 

2. Configuration of source and target addresses for crypto DMA transfer: 

l_02e4  0x00f10000   UNK                              ;unknown coprocessor  

                                                       instruction 
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 required for the CBC cipher mode of AES algorithm operation. 



 

 

  02e5  0x00af0032   ld r15,[r0,0032] // 0x40c8       ;0x3051 or 0x1051 DMA src 

                                                       config cmd -> OUT 

  02e6  0x002fb000   add r15,r11,r0,#0000             ;DMA src 

  02e7  0x002bb020   add r11,r11,r0,#0020             ;DMA src+=0x20 

  02e8  0x00366008   sub r6,r6,r0,#0008 

  02e9  0x00af0031   ld r15,[r0,0031] // 0x40c4       ;0x4052 or 0x6052 DMA dst 

                                                       config cmd -> OUT 

  02ea  0x000f0a3c   mov r15,r10                      ;DMA dst 

  02eb  0x009d82eb   wait4 

The above sequence initializes source and destination addresses for DMA transfer. The transfer is 

conducted by the means of 0x20 bytes at a time (eight 32-bit words). 

There are different TKD DMA configuration commands depending on whether they pertain to the 

source and destination address as well as the actual cipher operation (encryption vs. decryption). 

This is illustrated in Table 5. 

TKD DMA COMMAND MEMORY ADDRESS OPERATION 

0x3051 DMA source Encryption 

0x1051 DMA source Decryption 

0x4052 DMA destination Encryption 

0x6052 DMA destination Decryption 
 

Table 5 TKD DMA configuration commands. 

3. Actual DMA transfer: 

  02f1  0x00f44000   copAES_dma 

  02f2  0x00af002e   ld r15,[r0,002e] // 0x40b8     ;TKD CMD -> OUT 

  02f3  0x00d00004   rpt 4 

  02f4  0x000f0f3c   mov r15,r15                    ;do the DMA transfer 

  02f5  0x002aa020   add r10,r10,r0,#0020           ;DMA dst+=0x20 

  02f6  0x00399008   sub r9,r9,r0,#0008             ;decrease number of dwords by 8 

  02f7  0x009d82f7   wait4 

The above sequence seems to be configuring the target crypto algorithm for the DMA transfer 

(copAES_dma instuction). Then, it issues TKD DMA command (Fig. 13 and Fig. 14) to the TKD core. 

Finally, the transfer is performed by the means of a mov r15,r15 instruction within the repeat 

loop. 

It should be noted, that for TDES crypto algorithm, the configuration takes place with the use if the 

following instruction: 

   0x00f84000 copTDES_dma 

There are many other peculiarities pertaining to the crypto DMA implementation such as the use of 

0x00f00000 and 0x00f20000 coprocessor instruction, swapping bytes and decryptContainer 

implementation in particular. As this functionality didn't seem to be relevant from a point of view of 

CWPK and CW handling, it hasn't been analyzed / reversed engineered further (only basic 

understanding of TKD DMA implementation was acquired). 



 

 

Original reverse engineering annotations 

Upon successful reverse engineering of a SlimCORE processor instruction format and a disassembly 

dump of TKD firmware code, we conducted an analysis of its operation. This analysis was performed 

in the context of the information acquired by the means of both static16 and dynamic17 analysis of 

the firmware's code. Along the analysis process, firmware code corresponding to STTKDMA-

REL_3.1.6 was being annotated with comments and description of the instructions' operation.  

These original annotations are available as part of SRP-2018-01 project. The annotation file has the 

following format: 

!/*## (c) SECURITY EXPLORATIONS    2011 poland                                #*/ 

!/*##     http://www.security-explorations.com                                #*/ 

! 

!/* RESEARCH MATERIAL: SRP-2018-01                                            

*/ 

!/* Reverse engineering annotations                                            */ 

!/* SlimCORE firmware ver      : STTKDMA-REL_3.1.6                             */ 

!/*                   code size: 5852 (0x16dc)                                 */ 

!/*                   sha-1    : afe518789d1b0b1d3c0f8efd2704ac84a69140ed      */ 

! 

!/* THIS SOFTWARE IS PROTECTED BY DOMESTIC AND INTERNATIONAL COPYRIGHT LAWS    */ 

!/* UNAUTHORISED COPYING OF THIS SOFTWARE IN EITHER SOURCE OR BINARY FORM IS   */ 

!/* EXPRESSLY FORBIDDEN. ANY USE, INCLUDING THE REPRODUCTION, MODIFICATION,    */ 

!/* DISTRIBUTION, TRANSMISSION, RE-PUBLICATION, STORAGE OR DISPLAY OF ANY      */ 

!/* PART OF THE SOFTWARE, FOR COMMERCIAL OR ANY OTHER PURPOSES REQUIRES A      */ 

!/* VALID LICENSE FROM THE COPYRIGHT HOLDER.                                   */ 

! 

!/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS    */ 

!/* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,*/ 

!/* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL    */ 

!/* SECURITY EXPLORATIONS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, */ 

!/* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF  */ 

!/* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE     */ 

!/* SOFTWARE.                                                                  */ 

0 ######################## 

0 DISPATCH idx 0x04 -> 0x2000000 (init code) 

0 ######################## 

b ;counter = 0 

c ;memory idx of 0x4040 addr 

f ;store 0 to [0x4040-0x4060] 

10 ;chip customer mode 

12 ;low nibble of chip customer mode 

14 ;-> chip customer mode == 0x05 

16 ;-> chip customer mode == 0x02 

18 ;-> chip customer mode == 0x06 

1a ;-> chip customer mode == 0x0b 

1c ;-> chip customer mode == 0x0f 

1e ;-> chip customer mode == 0x03 

... 

Each line starts with a hexadecimal number indicating the instruction at a given code location. It is 

followed by a space separator and one of the following: 
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 static analysis of firmware code, STTKDMA device driver files and user level libraries. 
17

 dynamic analysis conducted with the help of a SlimCORE tracer tool. 



 

 

 a "!" character indicates a comment in the annotations file itself and it is ignored, 

 a ";" character indicates a comment following a given instruction, 

 any other character indicates a comment proceeding a given instruction. 

The annotation can be applied to a target disassembly dump18 with the use of our SCDisasm tool. 

The results of doing this is presented below: 

  0009  0x00b04084   st r4,[r0,0084] // 0x5e10 

  000a  0x00b03085   st r3,[r0,0085] // 0x5e14 

  000b  0x00b0002c   st r0,[r0,002c] // 0x40b0   ;counter = 0 

  000c  0x00e60010   mov r6,#0010                ;memory idx of 0x4040 addr 

  000d  0x00d00090   sync 

  000e  0x00d00009   rpt 9 

  000f  0x00b10601   st r0,[r6],r6+=#0001        ;store 0 to [0x4040-0x4060] 

  0010  0x00a5008a   ld r5,[r0,008a] // 0x5e28   ;chip customer mode 

  0011  0x00e40040   mov r4,#0040 

  0012  0x00735c80   and r3,r5,0x0f              ;low nibble of chip customer mode 

  0013  0x00c03005   cmp r3,#05 

  0014  0x00981026   je l_0026                   ;-> chip customer mode == 0x05 

  0015  0x00c03002   cmp r3,#02 

  0016  0x00981028   je l_0028                   ;-> chip customer mode == 0x02 

  0017  0x00c03006   cmp r3,#06 

  0018  0x0098102a   je l_002a                   ;-> chip customer mode == 0x06 

  0019  0x00c0300b   cmp r3,#0b 

  001a  0x0098102c   je l_002c                   ;-> chip customer mode == 0x0b 

  001b  0x00c0300f   cmp r3,#0f 

  001c  0x0098102e   je l_002e                   ;-> chip customer mode == 0x0f 

  001d  0x00c03003   cmp r3,#03 

  001e  0x00981030   je l_0030                   ;-> chip customer mode == 0x03 

Recent firmware changes 

Over the years, the SlimCORE firmware for STi7111 SoC has not changed much. There are not many 

differences between firmware version 3.1.6 and 3.5.0. The functionality and implementation of both 

firmwares is almost identical (the offsets for all main subroutines differ only by a few bytes). 

The biggest changed was observed in the most recent firmware version available in ITI-2849ST and 

ITI-2850ST set-top-boxes ( 

Table 6). 

FIRMWARE VERSION DATE CODE SIZE INSTRUCTION COUNT DIFFERENCE VS. 3.1.6 

STTKDMA-REL_3.1.6 2010 5852 0x05b7 Same 

STTKDMA-REL_3.5.0 2011 5944 0x05ce +23 instructions 

STTKDMA-REL_3.9.2 2015 6324 0x062c +117 instructions 
 

Table 6 SlimCORE firmware versions and their differences. 

More specifically, the code of the latest firmware is bigger by 117 instructions than the previous one. 

This is primarily due to the addition of the following code: 

 TKD commands obfuscation subroutine (15 instructions), 

 multiple invocations of TKD commands obfuscation subroutine (13 locations with 3 

instructions each), 
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 corresponding to the firmware version for which it was suited for. 



 

 

 modified implementation of the main TKD commands execution subroutine such as 

decryptKey (prolog and epilog subroutines, with 15 and 17 instructions respectively), 

 implementation of 3 new commands (40+ instructions19). 

These are the only differences observed - the core functionality related to key management and 

crypto DMA is implemented in a similar way as for old firmwares.  Below, a more detailed 

description pertaining to the new code is given. 

TKD commands obfuscation 

New firmware does not store TKD commands in data memory in plaintext form. They are obfuscated 

instead and need to be processed before being sent to TKD crypto core. 

Below, an code sequence handling setCWPK key command (STK cmd 0x02) is shown: 

  01cc  0x00c05002   cmp r5,#02 

  01cd  0x00981209   je l_0209    ;-> jump for STK CMD == 0x02 

  ... 

l_0209  0x00a10018   ld r1,[r0,0018] // 0x4060 = 0xa3cedbeb 

  020a  0x00ed020c   mov r13,#020c   ;subroutine return addr 

  020b  0x008c0059   j l_0059    ;call deobfuscation subroutine 

  020c  0x0009013c   mov r9,r1    ;move real (deobfuscated) TKD 

         ;command value to r9 

The code above loads an obfuscated TKD command value (0xa3cedbeb) to register r1 and invokes 

a deobfuscation subroutine at 0x0059 location. The result value (real TKD command value 

0x00ff8101) is returned in register r1.  

The implementation of TKD commands' deobfuscation subroutine is as follows: 

l_0059  0x00b02eff   st r2,[r14,00ff]  ;save r2 on stack 

  005a  0x00b03efe   st r3,[r14,00fe]  ;save r3 on stack 

  005b  0x003ee002   sub r14,r14,r0,#0002 ;adjust stack pointer for tmp space 

  005c  0x00721e03   mov r2,(r1>>3)&0xffff ;bits 3-18 of input cmd 

  005d  0x00731db3   mov r3,(r1>>19)&0x1fff ;bits 19-31 of input cmd 

  005e  0x00712210   movhi r1,r2<<16  ;bits 3-18 become bits 16-31 

  005f  0x007131a3   mov r1,r3&0x1fff<<3 ;bits 19-31 become bits 3-15 

  0060  0x00e2db82   mov r2,#db82 

  0061  0x00e322ca   mov r3,#22ca 

  0062  0x00d00090   sync 

  0063  0x00732210   movhi r3,r2<<16  ;=0xdb8222ca (fixed constant) 

  0064  0x00611300   xor r1,r1,r3   ;perform deobfuscation through xor 

  0065  0x00a31e01   ld r3,[r14,0001]  ;restore r3 

  0066  0x00a21e01   ld r2,[r14,0001]  ;restore r2 

  0067  0x00840d00   jmp r13   ;return from subroutine 

The deobfuscation process is very simple - it involves arbitrary bits shifting and an exclusive or (xor) 

operation with a constant value (Fig. 17). 
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 the total of new instructions exceeds 117, but this is compensated by the compression of some other code 
parts such as the one related to chip customer mode handling and STK commands' state maintenance in 
particular. 



 

 

 

Fig. 17 Deobfuscation of TKD commands. 

The following Java code can be used to successfully deobfuscate arbitrary TKD command value from 

new STi7111 firmware: 

 public static int deobfuscate(int v) { 

   int v1=(v>>3)&0xffff; 

   int v2=(((v>>19)&0x1fff)<<3)|((v&0x07)&0xffff); 

   int vv=(v1<<16)|v2; 

   int res=vv^0xdb8222ca; 

   return res; 

 } 

Prolog and epilog routines 

For certain TKD commands, additional prolog and epilog functions are executed by the new 

firmware. This in particular includes, but is not limited to core routines related to CWPK and CWs 

handling. 

The following prolog code is used prior to the execution of TKD commands: 

l_036a  0x00b04eff   st r4,[r14,00ff]   ;save r4 

  036b  0x00b05efe   st r5,[r14,00fe]   ;save r5 

  036c  0x003ee002   sub r14,r14,r0,#0002  ;adjust stack for tmp space 

  036d  0x00e44042   mov r4,#4042 

  036e  0x00e50030   mov r5,#0030 

  036f  0x00745210   movhi r4,r5<<16   ;=0x00304042 (TKD CMD) 

  0370  0x00a50043   ld r5,[r0,0043] // 0x410c = 0xfe248000 

  0371  0x00f00000   UNK                             ;unknown coprocessor  

                                                      instruction 

  0372  0x000f043c   mov r15,r4    ;TKD CMD -> OUT 

  0373  0x002f5010   add r15,r5,r0,#0010  ;0xfe248010 addr   -> OUT 

  0374  0x00d00004   rpt 4 

  0375  0x000f003c   mov r15,r0    ;rpt 4 r0 -> OUT 

  0376  0x00a51e01   ld r5,[r14,0001] // 0x0004 ;restore r5 

  0377  0x00a41e01   ld r4,[r14,0001] // 0x0004 ;restore r4 

  0378  0x00840d00   jmp r13    ;return from subroutine 



 

 

The code above seems to initialize several internal registers20 of a SlimCORE processor with zero 

values. This is accomplished by the means of a TKD command configuring destination address of a 

TKD operation in a similar way to DMA transfer. In this particular case, the 0x00304042 is however 

used instead of the usual 0x4052 DMA destination addr configuration command (Table 5). 

The epilog code invoked after the execution of arbitrary TKD commands is very similar to the prolog 

one: 

l_0379  0x00f00000   UNK                             ;unknown coprocessor  

                                                      instruction    

  037a  0x00b01eff   st r1,[r14,00ff]   ;save re 

  037b  0x003ee001   sub r14,r14,r0,#0001  ;adjust stack for tmp space 

  037c  0x00a10043   ld r1,[r0,0043] // 0x410c = 0xfe248000 

  037d  0x00ef4042   mov r15,#4042   ;TKD CMD -> OUT 

  037e  0x002f1010   add r15,r1,r0,#0010  ;0xfe248010 addr   -> OUT 

  037f  0x00d00004   rpt 4 

  0380  0x000f003c   mov r15,r0    ;rpt 4 r0 -> OUT 

  0381  0x00a11e01   ld r1,[r14,0001] // 0x0004 ;restore r1 

  0382  0x00840d00   jmp r13    ;return from subroutine 

There is however a difference in TKD CMD used (0x4042) to configure the destination address. 

New commands 

New firmware implements 3 new STK commands. These are briefly described below. 

STK command 0x43 

This command seems to directly initialize a key slot from a descrambling keys' memory location 

(offset 0x3100) with given input values. 

First, target memory address corresponding to descrambling key index indicated by register r4 is 

computed and stored in same register: 

l_026d  0x00a30043   ld r3,[r0,0043] // 0x410c  ;= 0xfe248000 (base addr) 

  026e  0x00e53100   mov r5,#3100    ;descrambling keys offset 

  026f  0x00d00090   sync 

  0270  0x00233500   add r3,r3,r5,#0000   ;descrambling keys addr 

  0271  0x000c003c   mov r12,r0    ;=0 

  0272  0x008c0276   j l_0276 

  ... 

l_0276  0x00144004   shl r4,r4,#0004   ;key idx<<4 

  0277  0x00244300   add r4,r4,r3,#0000   ;addr for a descrambler key 

After that, source memory address from where key data is to be obtained is also computed: 

l_0278  0x00a50008   ld r5,[r0,0008] // 0x4020  ; DATA[0] - src idx 
  0279  0x00e30120   mov r3,#0120    ; memory idx of 0x4480 addr  
  027a  0x00155002   shl r5,r5,#0002   ;src idx<<2 

  027b  0x00233500   add r3,r3,r5,#0000   ;src addr 

  027c  0x0040c001   tst r12,01 

  027d  0x00881284   jz l_0284    ;-> jump for STK cmd == 0x43 
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 SlimCORE processor space is mapped at base address 0xfe24800 of the host operating system. According 
to [7], internal processor registers occupy the beginning of this address space. 



 

 

Finally, key data from source memory location is moved into the target descrambling memory slot: 

l_0284  0x00f00000   UNK                             ;unknown coprocessor  

                                                      instruction    

  0285  0x00d00090   sync 

  0286  0x00d00090   sync 

  0287  0x00af0044   ld r15,[r0,0044] // 0x4110 ;= 0x23104022 (TKD CMD) -> OUT 

  0288  0x000f043c   mov r15,r4    ;addr for a descrambler key 

  0289  0x00af0300   ld r15,[r3,0000] // 0x0000 ;src data[0] -> OUT 

  028a  0x00af0301   ld r15,[r3,0001] // 0x0004 ;src data[4] -> OUT 

  028b  0x00af0302   ld r15,[r3,0002] // 0x0008 ;src data[8] -> OUT 

  028c  0x00af0303   ld r15,[r3,0003] // 0x000c ;src data[c] -> OUT 

Following that, a dummy delay loop is executed: 

  028d  0x00ec0064   mov r12,#0064   ;loop counter = 100 

l_028e  0x003cc001   sub r12,r12,r0,#0001  ;decrease counter 

  028f  0x008c128e   jne l_028e    ;-> loop jump if counter != 0 

From the above implementation, we conclude that STK command 0x43 makes it possible to set a 

given descrambling key directly in descramblers' key memory. 

STK command 0x44 

STK command 0x44 starts with an initialization of register r4 with a key index provided as part of STK 

command itself (byte 1 denoting 0x44+idx<<8 value): 

l_0273  0x0004033c   mov r4,r3    ;key idx 

  0274  0x00ec0001   mov r12,#0001   ;indicate STK command 0x44 

  0275  0x008c0278   j l_0278 

Following that, similarly to STK command 0x43, the source memory address is computed from where 

key data for a given source key index is to be obtained: 

l_0278  0x00a50008   ld r5,[r0,0008] // 0x4020  ; DATA[0] - src idx 
  0279  0x00e30120   mov r3,#0120    ; memory idx of 0x4480 addr  
  027a  0x00155002   shl r5,r5,#0002   ;src idx<<2 

  027b  0x00233500   add r3,r3,r5,#0000   ;src addr 

  027c  0x0040c001   tst r12,01 

  027d  0x00881284   jz l_0284    ;-> jump for STK cmd == 0x43 

The difference is that the jump at location 0x027d is not taken (r12 is set to 1) and consecutive 

instructions get executed. These instruction modify the key index value to be in the range 0-7 

(modulo 8) and transfer key data from a computed source location to registers: 

  027e  0x00444007   and r4,r4,#0007   ;key idx modulo 8 

  027f  0x00a50301   ld r5,[r3,0001] // 0x0004  ;src data[4] 

  0280  0x00a90302   ld r9,[r3,0002] // 0x0008  ;src data[8] 

  0281  0x00ac0303   ld r12,[r3,0003] // 0x000c ;src data[c] 

  0282  0x00a30300   ld r3,[r3,0000] // 0x0000  ;src data[0] 

  0283  0x008c0296   j l_0296 

Following that, a jump to prolog routine is made: 

l_0296  0x00ed0298   mov r13,#0298   ;subroutine return addr 

  0297  0x008c036a   j l_036a    ;invoke prolog subroutine 



 

 

Later on, two similar sequences corresponding to two TKD core operations are executed one after 

another. 

 OPERATION 1 

The TKD core is put into AES mode and TKD command 0x324923eb gets deobfuscated. As a result, 

cleartext TKD command ffff1081 is obtained in register r1: 

  0298  0x00f54000   copAES 

  0299  0x00a10028   ld r1,[r0,0028] // 0x40a0  ;= 0x324923eb (obfuscated TKD  

                       command) 

  029a  0x00b0deff   st r13,[r14,00ff]   ;save r13 

  029b  0x003ee001   sub r14,r14,r0,#0001  ;adjust stack for tmp space 

  029c  0x00ed029e   mov r13,#029e   ;subroutine return addr 

  029d  0x008c0059   j l_0059    ;invoke deobfuscation sub 

  029e  0x00ad1e01   ld r13,[r14,0001] // 0x0004 ;restore r13 

Selected bits of TKD command 0xffff1081 are further modified. As a result, TKD command 

0xffff8000 is produced: 

  029f  0x00e80080   mov r8,#0080    ;=0x80 

  02a0  0x00710020   bitset r1,r0&0x01<<0  ;=0xffff1080 (bit 0 cleared) 

  02a1  0x00718108   mov r1,r8&0xff<<8   ;=0xffff8080 (bit 15 set) 

  02a2  0x00710027   bitset r1,r0&0x01<<7  ;=0xffff8000 (bit 7 cleared) 

This command along arguments data contained in registers are sent to the TKD Crypto core (OUT 

operation): 

  02a3  0x000f013c   mov r15,r1    ;0xffff8000 (TKD CMD) -> OUT 

  02a4  0x008d82a4   wait2 

  02a5  0x000f033c   mov r15,r3    ;r3 -> OUT 

  02a6  0x000f053c   mov r15,r5    ;r5 -> OUT 

  02a7  0x000f093c   mov r15,r9    ;r9 -> OUT 

  02a8  0x000f0c3c   mov r15,r12    ;r12 -> OUT 

  02a9  0x008d82a9   wait2 

 

The result of the operation is read from TKD Crypto core (IN operation) and stored back to registers: 

  02aa  0x00030f3c   mov r3,r15    ;r3 <- IN 

  02ab  0x00050f3c   mov r5,r15    ;r5 <- IN 

  02ac  0x00090f3c   mov r9,r15    ;r9 <- IN 

  02ad  0x000c0f3c   mov r12,r15    ;r12 <- IN 

 OPERATION 2 

The TKD core is again put into AES mode and TKD command 0x23ce5beb gets deobfuscated. As a 

result, cleartext TKD command 10ff0101 is obtained in register r1: 

  02ae  0x00f54000   copAES 

  02af  0x00a1001a   ld r1,[r0,001a] // 0x4068  ;= 0x23ce5beb (obfuscated TKD  

                       command) 

  02b0  0x00b0deff   st r13,[r14,00ff]   ;save r13 

  02b1  0x003ee001   sub r14,r14,r0,#0001  ;adjust stack for tmp space 

  02b2  0x00ed02b4   mov r13,#02b4   ;subroutine return addr 

  02b3  0x008c0059   j l_0059    ;invoke deobfuscarion sub 

  02b4  0x00ad1e01   ld r13,[r14,0001] // 0x0004 ;restore r13 



 

 

Selected bits of TKD command 10ff0101 are further modified. As a result, TKD command 

0x10ff8101|(idx<<24) is produced in register r1: 

  02b5  0x00e80080   mov r8,#0080    ;=0x80 

  02b6  0x00714098   mov r1,r4&0x0f<<24   ;set key idx in highest byte 

  02b7  0x00718108   mov r1,r8&0xff<<8   ;=0x10ff8101 (bit 15 set) 

This command along arguments data contained in registers are sent to the TKD Crypto core (OUT 

operation): 

  02b8  0x00d00090   sync 

  02b9  0x000f013c   mov r15,r1    ;TKD CMD -> OUT 

  02ba  0x008d82ba   wait2 

  02bb  0x000f033c   mov r15,r3    ;r3 -> OUT 

  02bc  0x000f053c   mov r15,r5    ;r5 -> OUT  

  02bd  0x000f093c   mov r15,r9    ;r9 -> OUT 

  02be  0x000f0c3c   mov r15,r12    ;r12 -> OUT 

  02bf  0x008d82bf   wait2 

The result of the operation is read from TKD Crypto core (IN operation), but it is ignored: 

  02c0  0x00d00004   rpt 4 

  02c1  0x00000f3c   mov r0,r15    ;rpt 4 r0 <- IN 

A summary of both operations implemented by STK command 0x44 is presented in Table 7. 

OPERATION TKD COMMAND DESCRIPTION 

OP1 
(Calc pairing key) 

0xffff8000 Encrypt input with SCK key (key location 0x8021) 
and make it available as the output 

OP2 
(Calc crypto DMA key 
with the use of a 
pairing key) 

0x10ff8101|(idx<<24) Decrypt input with SCK key (key location 0x81) 
and store it at key location 10+idx (crypto DMA 
/ AES keys) 

 
Table 7 Summary of operations implemented by STK command 0x44. 

At the end of STK command 0x44 implementation, an epilog subroutine is invoked: 

  02c2  0x00ed02c4   mov r13,#02c4   ;subroutine return addr 

  02c3  0x008c0379   j l_0379    ;invoke epilog subroutine 

From the above implementation, we conclude that STK command 0x44 serves as either: 

 a debug command making it possible to test encryption and decryption of operations of a 

arbitrary pairing key (if keys at locations 0x80 and 0x81 are the same), 

 an implementation of a pairing functionality making use of two SCK keys (if keys at locations 

0x80 and 0x81 are different). 

STK command 0x48 
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 during our tests, commands ffff8001 and ffff8101 produced same results, thus we associate key 
locations ox80 and 0x81 with same SCK key. 



 

 

Implementation of STK command 0x48 is similar to command 0x44. The only difference is in the 

source for the input key data. For STK command 0x48, the input key comes from STK command 

buffer, not the 0x4480 based memory area: 

l_0291  0x0004033c   mov r4,r3    ;key idx 

  0292  0x00a30008   ld r3,[r0,0008] // 0x4020  ;DATA[0] 

  0293  0x00a50009   ld r5,[r0,0009] // 0x4024  ;DATA[4] 

  0294  0x00a9000a   ld r9,[r0,000a] // 0x4028  ;DATA[4] 

  0295  0x00ac000b   ld r12,[r0,000b] // 0x402c ;DATA[4] 

The processing of the input data is further handled from code location 0x0296 (shared code path for 

both 0x44 and 0x48 STK commands). 

Potential vulnerabilities and further research 

While analysis of STi7111 SlimCORE firmware and TKD operation has lead to the discovery of 2 

security vulnerabilities in the SoC implementation, some other vulnerabilities could be still present in 

the chip. Below, a brief description of several interesting candidates is given that in our opinion 

deserve a deeper attention and verification as they could be the source of additional security 

vulnerabilities of STi7111 SoC. 

Privileged customer mode 

STTKDMA-REL_3.1.6 firmware contains multiple checks of a customer mode variable. While 

hardware customer mode does not seem to matter much (it is mapped to a corresponding SW 

variable, which can be easily bypassed), the checks conducted indicate that some STK / TKD 

commands could be more sensitive than others. More specifically, it is reasonable to assume that a 

privileged / unique customer mode exists (such as the chipset vendor related one) that allows for 

some security sensitive commands to be executed.  

Table 8 illustrates customer mode values and corresponding STK commands (explicitly invalid or 

valid). 

CUSTOMER MODE STK COMMANDS 

HW SW INVALID VALID 

00, 01, 04, 
09, 0a, 0d, 
0e 

40 0x00, 0x05, 0x02, 0x03, 0x40 
0x01, 0x04 

 

02 04  0x20, 0x21, 0x22, 0x23 

03 10  0x80 
0x20, 0x21, 0x22, 0x23 

05 02  0x06 
0x20, 0x21, 0x22, 0x23 

06 05  0x20, 0x21, 0x22, 0x23 

07 11  0x80 
0x20, 0x21, 0x22, 0x23 

08 20 0x01, 0x04 0x10, 0x11, 0x12 
0x20, 0x21, 0x22, 0x23 

0b 08 0x01, 0x04 0x80 
0x20, 0x21, 0x22, 0x23 

0c 21 0x01, 0x04 0x10, 0x11, 0x12 
0x20, 0x21, 0x22, 0x23 



 

 

0f 09 0x01, 0x04 0x80 
0x20, 0x21, 0x22, 0x23 

 
Table 8 Customer mode values and corresponding STK commands. 

One can notice that for SW customer mode 0x02, STK command 0x06 is explicitly allowed. This 

commands corresponds to the unusual bit combination for the least significant byte of an associated 

TKD command (20ff0010 + idx<<24). It also targets descrambling keys memory (TKD cmd target is 

0x20 based), which makes this command a natural candidate for a more thorough investigation. 

Similarly, Table 9 shows some of the special modifications applied to TKD commands with respect to 

the customer mode value. These modifications concern CWPK and CW keys handling commands in 

particular, which again make them primary candidates for an in-depth investigation. 

SW CUSTOMER MODE STK COMMAND OPTIONAL SPECIAL HANDLING 

!=0x02 0x01 set xxxx82xx in TKD CMD 

0x02 0x02 set bit 0x08 in TKD CMD 

0x10, 0x08, 0x04 0x02 set xxxx82xx in TKD CMD 

0x02 0x03 set bit 0x08 in TKD CMD 

0x21 0x03 set xxxx03xx in TKD CMD 
set bit 0x80 in TKD CMD 

0x10, 0x11 0x03 set xxxx82xx in TKD CMD 

0x08 0x03 set xxxx81xx in TKD CMD 

0x10, 0x11, 0x04 0x04 set xxxx80xx in TKD CMD 

!=0x10,!=0x11,!=0x04 0x04 set bit 0x80 in TKD CMD 
 

Table 9 Customer mode value and special handling of STK commands. 

Additionally, the changes introduced in SlimCORE firmware 3.9.2 still take customer mode into 

account. For instance, the firmware makes sure that bit values 0x01 and 0x08 of HW customer mode 

are always 0: 

  000c  0x00a1008a   ld r1,[r0,008a] // 0x5e28  ;HW customer mode 

  000d  0x0045100b   and r5,r1,#000b   ;r5=bits 0, 1 and 3 of HW  

            customer mode 

  000e  0x00c05002   cmp r5,#02    ;is only bit 1 set ? 

l_000f  0x009c100f   jne,s l_000f    ;endless loop if not 

Privileged chip configuration state 

TKD Crypto Core configuration state is primarily maintained in memory by the means of TK and DMA 

CONFIG variables. 

In this context, TK CONFIG seems to be in particular interesting as it could decide about whether the 

chip is put into insecure / privileged state or not. For example, bit 1 of TK CONFIG variable implicates 

setting of bit 0 at 0x5e30 I/O register location. 

Additionally, bits 0, 5 and 7 of TK CONFIG variable directly influence the operation of a descrambler. 

Crypto DMA for read / write kernel access 

The environment of ITI-2840ST and ITI-2850ST set-top-boxes contain user level libraries that provide 

support for STTKDMA device driver functionality related to DMA transfers. As Crypto DMA hasn't 

been the focus of our research, it is still worth to verify whether kernel addresses can be used as 



 

 

either source or destination of arbitrary DMA transfers. If so, such an implementation weakness 

could be exploited to either modify kernel of the underlying OS22 or SlimCORE firmware. 

Kernel modification is in particular interesting here as this would make it possible to conduct a 

successful privilege elevation attack23 in a target OS. 

Crypto DMA for chip registers / memory access 

SlimCORE firmware 3.9.2 implicitly access memory area mapped by TKD Crypto core with the use of 

Crypto DMA related TKD commands (0x10 from the SoC base). 

In that context, crypto DMA could be potentially used to bypass SoC protections aimed at guarding 

access to chipset's keys (descrambling keys at 0x3100 offset or internal locations corresponding to 

CWPK key) or internal registers. The latter seems to be an interesting option to consider taking into 

account the prolog and epilog functions introduced to firmware 3.9.2. These functions do only one 

thing - overwrite chip locations likely mapped to internal SlimCORE processor registers as indicated 

by the slim_core_map structure [7] (Fig. 18). 

 

Fig. 18 Internal SlimCORE processor structure. 

If this is the case, it could mean that these registers leak key data as part of computations 

performed. 
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 some device drivers such as /dev/memdev of ITI-2849ST and ITI2850ST set-top-boxes opened access to 
limited I/O space of a STi7111 chipset such as SlimCORE processor memory, a vulnerability in Crypto DMA 
could be abused to gain access to whole kernel memory of the underlying OS. 
23

 as a result of fixing the vulnerabilities discovered by Security Explorations the main MHP application is 
currently executed as unprivileged user and with no capabilities on ADB set-top-boxes. 



 

 

Arbitrary transfer from / to key memories would need to be accomplished by the means of a custom 

SlimCORE processor code sequence executed from within the firmware code. 

TKD commands for registers access 

STK command 0x24 seems to be accessing some software register. This is indicated by the following: 

 sttkdmaHal_GetSWReg name associated with a code function implementing the 

command, 

 reading of the function execution result from some strange memory locations corresponding 

to chipset's memory space (0x3024 and 0x3028 offsets from chipset base), 

 TKD 0x83ff0203 command format and a target of the operation likely indicating the register 

(value 0x83). 

Beside STK command 0x24, there are other similar STK commands (0x21-0x23) that make use of TKD 

command targets likely indicating a SoC register (values 0x80-0x82). 

This goes along the setCWPK command24 that makes use of SCK key (key implicitly associated with 

0x81 location). 

Thus, it is worth to investigate these commands in a little bit more detail in order to find out 

whether SCK key could be accessed / leaked. 

With the ability to extract arbitrary pairing key (such as the one from 0x02 key location), TKD 

command 0x02ff8101 should be treated as under attacker's control. This should make it easier to 

proceed with the investigation of STK commands 0x21-0x24 from SWREGS group (Table 4) in order 

to verify whether access to some sensitive SW registers and SCK key in particular could be actually 

gained. 

It is also worth checking whether the plaintext value of a CWPK key set as a result of the usual 

pairing key configuring commands (STK 0x01 and 0x02) could be accessed through target TKD 

command locations 0x80-0x83 (through memory offsets around / at 0x3024 and 0x3028 from 

chipset base). 

Coprocessor related commands  

There are many coprocessor related commands (opcode 0x0f and wait commands) of which 

meaning and format has not been fully discovered.  

These commands seem to be configuring single TKD core components (such as AES / TDES engine) or 

actual pathways / routing between given TKD core parts (key locations, memory addresses and I/O 

ports). The latter is concluded from the implementation of crypto DMA and its use of mov r15, 

r15 instruction in particular (it can move data between implicitly configured source and destination 

location). The nature of TKD commands seem to confirm this as well (commands indicate a source 

and destination for a given operation). 

It is worth to explore coprocessor related commands as there might exist a way to configure a 

pathway from a secret key location to a memory or I/O port. It could be that these commands 
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 or all commands that configure a pairing key such as 0x01, 0x02, 0x10 and 0x11 STK commands. 



 

 

influence whether the output of a command execution is provided or not (this is in particularly 

important for pairing key configuration commands - some of them provide output, some do not). 

PTI 

PTI (Programmable Transport Interface) core is responsible for handling MPEG transport streams, 

their filtering, descrambling and dispatch. PTI runs firmware code (embedded in and initialized by 

ptiinit.ko device driver), which implements an unknown CPU instruction set. 

Some initial analysis of this core along the approach taken has been presented in our paper from 
2017 [9]. That analysis has lead us to the conclusion that key contents held in PTI's memory location 
pointed by DescramblerKeysStart address were offsets to some other memory location 
(such as a descrambler memory), which might have been used by the PTI DMA engine or a 
descrambler itself. 
 
The analysis of TKD core operation and associated user level libraries25 seem to confirm that (PTI 

seems to interact with TKD crypto core by the means of offsets to descrambling key locations). 

Taking into account the functionality of PTI component, its complexity (device driver binary is 
250KB+ in size),  SoC location, interaction with a descrambler and use across various ST chipset 
generations, PTI seems to be a primary target for any further security investigation of DVB chipsets 
from STMicroelectronics for all concerned parties (PTI is a common core for many ST DVB chipsets 
generations). 

FDMA and STBUS 

SlimCORE processor executing firmware for TKD core control is not the only SlimCORE CPU available 

as part of STi7111 SoC. There is also one more SlimCORE processor that runs firmware implementing 

FDMA (Flexible Direct Memory Access) transfers. 

In the environment of ITI-2849ST and ITI2850ST set-top-boxes, this firmware can be successfully 

extracted and disassembled from fdma.ko device driver file26. Its analysis might provide additional 

hints regarding SlimCORE instruction set and coprocessor instructions in particular (FDMA firmware 

makes heavy use of these instructions). 

Finally, as indicated on Fig. 1, all components of STi7111 SoC are interconnected with the use of an 

STBus [10] system interconnect. It could be that SlimCORE coprocessor instructions are in some way 

related to STBus (that they influence an interact with this system interconnect). Therefore, it is also 

an interesting area to check in order to verify whether some protected SoC parts can be accessed by 

the means of STBus. 

OTP security fuses 

STi7111 contains a dedicated OTP (one time programming) memory area containing various 

configuration settings of the SoC. This area is mapped at 0xFE00D000 address and it contains such 

settings as chipset security state and chip id. There are however many other interesting settings as 

illustrated below: 
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 CopyTKDMAOffsetToTCsdKey and CopyTCsdKeytToTKDMAKey functions of libstd_drv_scds.so 
library. 
26

 FDMA SlimCORE firmware initialization takes place in stfdma_FDMA2Conf subroutine. References to 
firmware code and data sections are immediately followed by pointers to magic strings ("DATA" and "PROG" 
respectively).  



 

 

STSECTOOLFUSE_ReadItem 00000001 00000005 netjtag_portstate (lock bit) @jtag_protect 

(addr FE00D000,mask 0x0f, shift 0x0c) 

STSECTOOLFUSE_ReadItem 00000002 00000001 @engineering_test_000 (FE00D028,0x01,0x06) 

STSECTOOLFUSE_ReadItem 00000003 00000001 secure chipset (lock bit) @trans_cw_secure 

(FE00D03c,0x01,0x01) 

STSECTOOLFUSE_ReadItem 00000004 00000001 @trans_cw_enable (FE00D02c,0x01,0x05) 

STSECTOOLFUSE_ReadItem 00000005 00000000 @crypt_cpu0_ifetch_src_rst 

STSECTOOLFUSE_ReadItem 00000006 00000000 @crypt_cpu1_ifetch_src_rst 

STSECTOOLFUSE_ReadItem 00000007 00000000 @crypt_cpu2_ifetch_src_rst 

STSECTOOLFUSE_ReadItem 00000008 00000001 @crypt_sigdma_src_rst 

STSECTOOLFUSE_ReadItem 00000009 00000001 @crypt_sigchk_src_rst 

STSECTOOLFUSE_ReadItem 0000000a 00000001 @crypt_watchdog_src_rst 

STSECTOOLFUSE_ReadItem 0000000b 00000000 @crypt_hash_include_addr 

STSECTOOLFUSE_ReadItem 0000000c 00000001 enable_scs (lock bit) @crypt_sigchk_enable 

STSECTOOLFUSE_ReadItem 0000000d 00000001 @mes0_enable 

STSECTOOLFUSE_ReadItem 0000000e 00000000 @mes0_src_id_mon_enable 

STSECTOOLFUSE_ReadItem 0000000f 00000001 @mes0_encrypt_all_enable 

STSECTOOLFUSE_ReadItem 00000010 00000000 (lock bit) @t1_filter_enable  

STSECTOOLFUSE_ReadItem 00000011 00000001 (lock bit) @dirt_disable 

STSECTOOLFUSE_ReadItem 00000012 00004872 @engineering_0 

STSECTOOLFUSE_ReadItem 00000013 0000251b @engineering_1 

STSECTOOLFUSE_ReadItem 00000014 0000a642 @engineering_2 

STSECTOOLFUSE_ReadItem 00000015 0000ba4b @engineering_3 

STSECTOOLFUSE_ReadItem 00000016 00000000 @metal_fix_nb 

STSECTOOLFUSE_ReadItem 00000017 00000001 @proc_type 

STSECTOOLFUSE_ReadItem 00000018 00000002 @fab_loc 

STSECTOOLFUSE_ReadItem 00000019 00000000 @customer_otp0 

STSECTOOLFUSE_ReadItem 0000001a 00000000 @customer_otp1 

STSECTOOLFUSE_ReadItem 0000001b 00000000 @customer_otp2 

STSECTOOLFUSE_ReadItem 0000001c 00000000 @customer_otp3 

We verified that arbitrary OTP programming of this area is possible, which makes it an interesting, 

but also dangerous target for exploration. 

It could be that overall chip security could be weakened (or even disabled) by the means of some of 

the OTP settings. 

The following OTP settings could be in particular interesting from a security point of view: 

 all lock bit fuses that are not enabled (set to the value of 0) as they likely influence SoC 

security (i.e. secure chipset setting), 

 crypt_cpuX_ifetch_src_rst settings as these could influence whether the source (such as 

a key) of an instruction fetch operation is leaked. 

T1 bus configuration 

T1 seems to be the internal bus associated with CCORE. The existence of this bus is mentioned in 

several locations (PhD thesis [8], STM Linux distribution27, and t1_filter_enable OTP security 

fuse among others). 

In some previous distributions of ADB software for ITI-2849ST and ITI-2850ST set-top-boxes, the 

libstd_drv_ccore.so library contained a ccore_T1Configure symbol associated with a 

subroutine doing memory writes to 0xFE216400 based chipset memory area. 
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 linux-2.6.32.16_stm24_sh4_0205.patch 



 

 

While the written values are not in particular interesting (mostly zero), the unused data immediately 

following it formed what looked like blocks and their values seemed to follow a pattern: 

.rodata:00005414                 .data.l h'FC40 

.rodata:00005418                 .data.l h'FC04 

.rodata:0000541C                 .data.l h'FC08 

.rodata:00005420                 .data.l h'FC00 

[block 1] 

.rodata:00005424                 .data.l 8 

.rodata:00005428                 .data.l h'30100 

.rodata:0000542C                 .data.l h'B 

.rodata:00005430                 .data.l h'60200 

.rodata:00005434                 .data.l h'1E 

.rodata:00005438                 .data.l h'10300 

.rodata:0000543C                 .data.l h'32 

.rodata:00005440                 .data.l h'10400 

.rodata:00005444                 .data.l h'34 

.rodata:00005448                 .data.l h'40600 

.rodata:0000544C                 .data.l h'35 

.rodata:00005450                 .data.l h'60100 

.rodata:00005454                 .data.l h'36 

.rodata:00005458                 .data.l h'30400 

.rodata:0000545C                 .data.l h'37 

.rodata:00005460                 .data.l h'30400 

.rodata:00005464                 .data.l h'41 

.rodata:00005468                 .data.l h'30800 

.rodata:0000546C                 .data.l h'44 

.rodata:00005470                 .data.l h'10600 

.rodata:00005474                 .data.l h'45 

.rodata:00005478                 .data.l h'10400 

.rodata:0000547C                 .data.l h'51 

.rodata:00005480                 .data.l h'20000 

.rodata:00005484                 .data.l h'FFFF 

.rodata:00005488                 .data.l h'FFFF 

[block 2] 

.rodata:0000548C                 .data.l 8 

.rodata:00005490                 .data.l h'50202 

.rodata:00005494                 .data.l h'B 

.rodata:00005498                 .data.l h'30101 

.rodata:0000549C                 .data.l h'1E 

.rodata:000054A0                 .data.l h'10400 

.rodata:000054A4                 .data.l h'32 

.rodata:000054A8                 .data.l h'20100 

.rodata:000054AC                 .data.l h'34 

.rodata:000054B0                 .data.l h'40700 

.rodata:000054B4                 .data.l h'35 

.rodata:000054B8                 .data.l h'60500 

.rodata:000054BC                 .data.l h'36 

.rodata:000054C0                 .data.l h'40100 

.rodata:000054C4                 .data.l h'37 

.rodata:000054C8                 .data.l h'40300 

.rodata:000054CC                 .data.l h'41 

.rodata:000054D0                 .data.l h'40300 

.rodata:000054D4                 .data.l h'44 



 

 

.rodata:000054D8                 .data.l h'10700 

.rodata:000054DC                 .data.l h'45 

.rodata:000054E0                 .data.l h'10402 

.rodata:000054E4                 .data.l h'51 

.rodata:000054E8                 .data.l h'10500 

 

.rodata:000054EC                 .data.l h'FFFF 

.rodata:000054F0                 .data.l h'FFFF 

... 

It could be that these memory writes configure the possible interconnections (filter as in OTP fuse 

name) between TKD Crypto core components (whether given key locations could be accessed, 

whether the results of TKD commands produce results, etc.). 

Key initialization quirks 

Starting from firmware 3.5.0, some strange detail pertaining to the implementation of a key 

initialization subroutine could be noticed: 

l_0511  0x00409900   tst r9,00    ;AES ? 

  0512  0x008c151c   jne l_051c    ;-> jump for AES 

  0513  0x00fa4000   copTDES    ;handle TDES 

  0514  0x000f083c   mov r15,r8    ;TKD CMD -> OUT 

  0515  0x008e1515   wait1 

  0516  0x00d00002   rpt 2 

  0517  0x000f003c   mov r15,r0    ;rpt 2 r0 -> OUT 

  0518  0x00d00002   rpt 2 

  0519  0x000f0c3c   mov r15,r12    ;rpt 2 r12 -> OUT 

  051a  0x008e151a   wait1 

  051b  0x008c0522   j l_0522 

What's interesting in the code above is that as part of a single key initialization routine, r12 register 

is used instead of the usual r0 (zero value). This register holds subroutine return addr for the 

invocation of a key initialization code: 

  0038  0x00ed003a   mov r13,#003a   ;subroutine return addr 

  0039  0x008c04f5   j l_04f5    ;init all of the keys (CWPK, 

                                                      CWs) 

  ... 

l_04f5  0x000c0d3c   mov r12,r13    ;r12 = subroutine return addr 

  04f6  0x00a7000c   ld r7,[r0,000c] // 0x4030  ;customer mode 

  04f7  0x00407040   tst r7,40 

  04f8  0x009c1510   jne,s l_0510    ;-> jump to the end 

  04f9  0x0009003c   mov r9,r0    ;r9 = 0 (TDES) 

  04fa  0x00e10001   mov r1,#0001 

  04fb  0x00407002   tst r7,02 

  04fc  0x008814fe   jz l_04fe 

  04fd  0x0009013c   mov r9,r1    ;r9 = 1 (AES) 

l_04fe  0x00a8001c   ld r8,[r0,001c] // 0x4070  ;= 0x00ff8101 (setCWPK) 

  04ff  0x00ed0501   mov r13,#0501   ;subroutine return addr 

  0500  0x008c0511   j l_0511    ;init single crypto key 

It's rather unusual to tie an initialization of a cryptographic key with a firmware code return addr. 

This alone requires further investigation in our opinion (whether such a key initialization is required 

for proper CWPK and CW decryption, etc.).  



 

 

TOOLS 

SlimCORE disassembler 

SlimCORE disassembler (SCDisasm) is a tool to disassemble SlimCORE processor instruction streams 

from various firmwares used by STi7111 DVB chipsets. It implements the following features: 

 SlimCORE instruction stream disassembly from a device driver file or input files 

corresponding to firmware code / data sections, 

 extraction of SlimCORE firmware data / code sections from a device driver file to output 

files, 

 statistics information regarding the usage of SlimCORE instructions (i.e. unknown, 

recognized instructions).  

Description 

Table 10 describes command line arguments available in SCDisasm tool. 

ARGUMENT DESCRIPTION 
-dis The argument specifies a disassemble command. 
-m drv|file The argument indicates whether a driver file or code dumps should be 

used as a source for the tool operation. 
-f drv_name The argument denotes the name of a device driver file to use. 
-a ann_name The argument denotes the name of an annotation file to use. 
-c code_file The argument denotes the name of a SlimCORE code dump file to use 

(either input for a disassemble command or an output for the extraction 
command) 

-d data_file The argument denotes the name of a SlimCORE data dump file to use 
(either input for a disassemble command or an output for the extraction 
command) 

-stat unk|all The argument indicates a statistics command and whether statistics for 
unknown or all instructions should be given. 

-ext code|data The argument indicates extraction command and whether SlimCORE code 
or data section dumps should be extracted from a device driver file. 

 
Table 10 Command line arguments of SCDisasm tool. 

Sample uses 

1. Disassemble SlimCORE firmware from a default device driver file and with the use of a given 

annotations file: 

run -dis -m drv -a rea\3.1.6.txt 

/*## (c) SECURITY EXPLORATIONS    2011 poland                                #*/ 

/*##     http://www.security-explorations.com                                #*/ 

 

SlimCore disassembler 

- loading sttkdma_core_user.ko 

   ver: STTKDMA-REL_3.1.6 

- locating SlimCore firmware 

   code at 0x00003820 size 5852 (0x16dc) 

    - sha1 afe518789d1b0b1d3c0f8efd2704ac84a69140ed 

   data at 0x00004efc size 1156 (0x0484) 

    - sha1 d00044a77407b5a530f94c53bacbbf5b3ee3a0b4 

- loading annotations rea\3.1.6.txt 

- disassembling 

[CODE] 

 



 

 

######################## 

DISPATCH idx 0x04 -> 0x2000000 (init code) 

######################## 

l_0000  0x00200000   add r0,r0,r0,#0000 

  0001  0x00200000   add r0,r0,r0,#0000 

  0002  0x00d00080   sync 

  0003  0x00e30374   mov r3,#0374 

  0004  0x00743210   movhi r4,r3<<16 

  0005  0x00e4ffff   mov r4,#ffff 

  0006  0x00e3ffff   mov r3,#ffff 

  0007  0x00743210   movhi r4,r3<<16 

  0008  0x00e30001   mov r3,#0001 

  0009  0x00b04084   st r4,[r0,0084] // 0x5e10 

  000a  0x00b03085   st r3,[r0,0085] // 0x5e14 

  000b  0x00b0002c   st r0,[r0,002c] // 0x40b0 = 0x00000000           ;counter = 0 

  000c  0x00e60010   mov r6,#0010                                     ;memory idx of 0x4040 addr 

  000d  0x00d00090   sync 

  000e  0x00d00009   rpt 9 

  000f  0x00b10601   st r0,[r6],r6+=#0001                             ;store 0 to [0x4040-0x4060] 

  0010  0x00a5008a   ld r5,[r0,008a] // 0x5e28                        ;chip customer mode 

  0011  0x00e40040   mov r4,#0040 

  0012  0x00735c80   and r3,r5,0x0f                                   ;low nibble of chip customer mode 

  0013  0x00c03005   cmp r3,#05 

  0014  0x00981026   je l_0026                                        ;-> chip customer mode == 0x05 

  ... 

2. Extract code section of SlimCORE firmware from a default device driver file and save it into given 

output file: 

run -ext code -m drv -c code.dat 

/*## (c) SECURITY EXPLORATIONS    2011 poland                                #*/ 

/*##     http://www.security-explorations.com                                #*/ 

 

SlimCore disassembler 

- loading sttkdma_core_user.ko 

   ver: STTKDMA-REL_3.1.6 

- locating SlimCore firmware 

   code at 0x00003820 size 5852 (0x16dc) 

    - sha1 afe518789d1b0b1d3c0f8efd2704ac84a69140ed 

   data at 0x00004efc size 1156 (0x0484) 

    - sha1 d00044a77407b5a530f94c53bacbbf5b3ee3a0b4 

- saving code.dat 

3. Extract data section of SlimCORE firmware from a given device driver file and save it into given 

output file: 

run -ext data -m drv -f sttkdma_core_user.ko -d data.dat 

/*## (c) SECURITY EXPLORATIONS    2011 poland                                #*/ 

/*##     http://www.security-explorations.com                                #*/ 

 

SlimCore disassembler 

- loading sttkdma_core_user.ko 

   ver: STTKDMA-REL_3.1.6 

- locating SlimCore firmware 

   code at 0x00003820 size 5852 (0x16dc) 

    - sha1 afe518789d1b0b1d3c0f8efd2704ac84a69140ed 

   data at 0x00004efc size 1156 (0x0484) 

    - sha1 d00044a77407b5a530f94c53bacbbf5b3ee3a0b4 

- saving data.dat 

4. Show statistic regarding unknown instructions embedded in SlimCORE firmware loaded from a 

given set of files corresponding to firmware code and data sections: 

run -stat unk -m files -c code.dat -d data.dat 

/*## (c) SECURITY EXPLORATIONS    2011 poland                                #*/ 

/*##     http://www.security-explorations.com                                #*/ 



 

 

SlimCore disassembler 

- loading code.dat 

- loading data.dat 

 

[UNKNOWN INSTRUCTIONS STATS] 

opcode 008cxxxx cnt 1 

opcode 008exxxx cnt 2 

opcode 00b2xxxx cnt 2 

opcode 00f0xxxx cnt 6 

opcode 00f1xxxx cnt 4 

opcode 00f2xxxx cnt 4 

opcode 00f4xxxx cnt 4 

opcode 00f8xxxx cnt 4 

opcode 00ffxxxx cnt 1 

total 9 opcodes 

SlimCORE tracer 

SlimCORE tracer is a tool that makes it possible to trace execution flow of SlimCORE processor 

instructions. It implements the following features: 

 tracing the execution of SlimCORE processor instructions (single stepping, dump of register 

contents with proper indication of register changes), 

 logging of a trace of executed instructions. 

The tool was developed as part of SE-2011-01 project and its operation was suited to the 

environment of fully compromised (OS root, JVM root and kernel level access privileges) ITI-2849ST / 

ITI-2850ST set-top-boxes and SE-2011-01 Proof of Concept code in particular. A successful operation 

and use of SlimCORE tracer may require customization and/or porting to the target STi7111 

environment (target STB). 

Tracer API 

Proper operation of the tracer requires that arbitrary access to STi7111 chipset's memory is possible. 

This in particular includes access to SlimCORE firmware's code and data sections at the time of its 

execution. 

Access to firmware code is necessary due to the fact that traced instructions are modified on the fly. 

Access to firmware data stems from the fact that it is used by the tracer to keep state of its 

execution. 

Tracer's API class contains routines that need to be adopted to the requirements of a target STB 

environment in order to provide the tracer with read and write access to STTKDMA memory. These 

are illustrated in Table 11. 

TRACER API SE-2011-01 POC ROUTINES DESCRIPTION 
STTKDMA_READ(int 

addr) 

STTKDMA.tkdma_read The base routine making it 
possible to read kernel 
memory address. 

STTKDMA_WRITE(int 

addr,int val) 

STTKDMA.tkdma_write The base routine making it 
possible to write kernel 
memory address with a given 
value. 

LOG(String s) ApiMonitor.log The base routine to log tracer's 
output. 



 

 

 
Table 11 Tracer's API subroutines. 

Additionally, tracer's Config class contains several variables describing target location for a tracer 

core routine (firmware hijacking location and location where tracer code could be appended). They 

are described in Table 12. 

TRACER VARIABLE SE-2011-01 POC VALUE DESCRIPTION 
STTKDMA_BASE 0xFE248000 Chip base address 
STTKDMA_DATA 0x4000 Offset of SlimCORE firmware 

data section start (relative to 
chip base) 

STTKDMA_CODE 0x6000 Offset of SlimCORE firmware 
code section start (relative to 
chip base) 

TRACER_DATA 0x0140 Offset of tracer's state 
variables (relative to 
STTKDMA_DATA) 

TRACER_CODE 0x05b7 Offset of tracer's core routine 
(relative to STTKDMA_CODE) / 
starting location past the 
firmware code section 

 
Table 12 Tracer's API variables. 

Description 

Instead of making use of the hardware features of a SlimCORE processor28, tracer's implementation 

is based on an idea of a binary instrumentation. Traced instructions are translated into other 

instructions or their sequences. These instructions are executed by the tracer in such a way so that it 

is possible to maintain information about the contents of registers and jump targets in particular 

(whether conditional jumps were taken or not). 

The tracer is composed of the following two parts: 

 SlimCORE instruction disassembler and rewriter, 

 core tracer routine. 

The core tracer routine is copied at the end of an original firmware's code section29. It executes 

binary translated instruction sequences produced by the disassembler and rewriter as illustrated on 

Fig. 19. 

                                                           
28

 the Run I/O register from slim_core_map's embedded core structure and SLIM_RUN_STOP 
SLIM_RUN_ENABLE and SLIM_RUN_STOPPED flags [7] 
29

 code location 0x05b7 as original SlimCORE tracer's code has been implemented for firmware 3.1.6. 



 

 

 

Fig. 19 SlimCORE tracer architecture. 

The core tracer routine is entered when a breakpoint30 is hit and it never exits. Its code executes in a 

loop as a response to notifications received from the tracer's disassembler and rewriter. The 

disassembler and rewriter parses SlimCORE instruction to execute from a given firmware location 

(denoted by tracer's IP variable),  translates its opcode into a form suitable for the tracer and writes 

it back into a dedicated execution block of the core routine. 

The tracer maintains state information in firmware data section location starting at offset 0x4140. 

The meaning of tracer state variables is illustrated in Table 13. 

TRACER VARIABLE OFFSET IDX DESCRIPTION 

R1-R14 0x00-0x0d Variables holding saved SlimCORE registers 
(saved execution context) 

DUMMY 0x0e A dummy variable used by the tracer NOP 
instruction 

STATUS 0x0f A variable indicating that a core tracer routine 
has been reached (a breakpoint has been hit) 

CMD 0x10 A variable indicating whether the tracer 
should proceed with execution of any 
translated instructions 

BFLAG1, BFLAG2, BFLAG3 0x11-0x13 Variable indicating, which branch (1, 2 or 3) 
has been taken as a result of a given 
translated instructions' sequence execution 

 
Table 13 Tracer's state variables. 

Tracer gets executed as a result of hitting a breakpoint instruction. This instruction is a simple jump 

to the beginning of a tracer core routine: 

public static final int BREAK      = 0x00d05b17; //JMP 0x5b7 

                                                           
30

 the interception breakpoint, there can be only one of it set. 



 

 

CORE ROUTINE 

The structure of a core tracer's routine is illustrated on Fig. 20.  

 

Fig. 20 Tracer's core routine implementation. 

The core routine starts with an instruction sequence responsible for the saving of an original 

execution context. As a result, the contents of SlimCORE registers are stored into memory (variables 

R1-R14): 

  0x00b01050,//   st r1,[r0,0050] offset 0x05b7 

  0x00b02051,//   st r2,[r0,0051] offset 0x05b8 

  0x00b03052,//   st r3,[r0,0052] offset 0x05b9 

  0x00b04053,//   st r4,[r0,0053] offset 0x05ba 

  0x00b05054,//   st r5,[r0,0054] offset 0x05bb 

  0x00b06055,//   st r6,[r0,0055] offset 0x05bc 

  0x00b07056,//   st r7,[r0,0056] offset 0x05bd 

  0x00b08057,//   st r8,[r0,0057] offset 0x05be 

  0x00b09058,//   st r9,[r0,0058] offset 0x05bf 

  0x00b0a059,//   st r10,[r0,0059] offset 0x05c0 

  0x00b0b05a,//   st r11,[r0,005a] offset 0x05c1 

  0x00b0c05b,//   st r12,[r0,005b] offset 0x05c2 

  0x00b0d05c,//   st r13,[r0,005c] offset 0x05c3 

  0x00b0e05d,//   st r14,[r0,005d] offset 0x05c4 



 

 

Next, the value of a STATUS variable is set to 0 to indicate that a breakpoint has been hit (that 

tracer's code has been reached): 

  0x00b0005f,//   st r0,[r0,005f] offset 0x05c5 

Following that, the tracer waits in a loop for the CMD variable to change to the non-zero value. This 

happens when a tracer is notified by the instruction rewriter to execute next instruction (to single 

step over an instruction): 

  0x00a50060,//   ld r5,[r0,0060] offset 0x05c6 

  0x00c05000,//   cmp r5,#00 offset 0x05c7 

  0x009815c6,//   je  0x05c6  offset 0x05c8 

Following that, the CMD variable state is restored to indicate a default state (a stop after an 

instruction execution): 

  0x00b0005e,//   st r0,[r0,005e] offset 0x05c9 

  0x00b00060,//   st r0,[r0,0060] offset 0x05ca 

Next, saved SlimCORE registers context is restored to the original values: 

  0x00a10050,//   ld r1,[r0,0050] offset 0x05cb 

  0x00a20051,//   ld r2,[r0,0051] offset 0x05cc 

  0x00a30052,//   ld r3,[r0,0052] offset 0x05cd 

  0x00a40053,//   ld r4,[r0,0053] offset 0x05ce 

  0x00a50054,//   ld r5,[r0,0054] offset 0x05cf 

  0x00a60055,//   ld r6,[r0,0055] offset 0x05d0 

  0x00a70056,//   ld r7,[r0,0056] offset 0x05d1 

  0x00a80057,//   ld r8,[r0,0057] offset 0x05d2 

  0x00a90058,//   ld r9,[r0,0058] offset 0x05d3 

  0x00aa0059,//   ld r10,[r0,0059] offset 0x05d4 

  0x00ab005a,//   ld r11,[r0,005a] offset 0x05d5 

  0x00ac005b,//   ld r12,[r0,005b] offset 0x05d6 

  0x00ad005c,//   ld r13,[r0,005c] offset 0x05d7 

  0x00ae005d,//   ld r14,[r0,005d] offset 0x05d8 

The block containing the traced (binary translated by the rewriter) instruction sequence gets 

executed: 

  0x00d00090,//   ins1 offset 0x05d9 

  0x00d00090,//   ins2 offset 0x05da 

  0x00d00090,//   ins3 offset 0x05db 

  0x00d00090,//   ins4 offset 0x05dc 

  0x00d00090,//   ins5 offset 0x05dd 

As a result of the above, one of the code paths corresponding to branches of conditional instructions 

could be taken. If this is the case, proper BFLAG variable is set accordingly: 

  //branch 1 

  0x00b00061,//   st r0,[r0,0061] offset 0x05df 

  0x00d05b17,//   jmp 0x5b7 offset 0x05e0 

  //branch 2 

  0x00b00062,//   st r0,[r0,0062] offset 0x05e1 

  0x00d05b17,//   jmp 0x5b7 offset 0x05e2 



 

 

  //branch 3 

  0x00b00063,//   st r0,[r0,0063] offset 0x05e3 

  0x00d05b17,//   jmp 0x5b7 offset 0x05e4 

After that, the core tracer's routine starts execution from the beginning (it waits in a loop for CMD 

flag to be set by the disasssembler and rewriter part indicating next instruction to execute). 

INSTRUCTION DISASSEMBLER AND REWRITER 

The SlimCORE instruction opcodes disassembler and rewriter processes SlimCORE firmware 

instructions and translates them into corresponding sequences for execution by the core tracer's 

routine. 

Upon processing of a given instruction, the translated instruction or their sequence is written into 

the translated opcode block of a core tracer routine (indicated by the INS_OFF variable). The core 

tracer routine is notified via CMD variable that a next instruction is ready to be traced (that is should 

be executed in a single step manner). 

Specific translation rules used by the instruction rewriter are briefly described in Table 14. 

SOURCE 
INSTRUCTION 
(OPCODE) 

TRANSLATED INSTRUCTION DESCRIPTION 

WAITx (opcode&0xfff000)|(INS_OFF&0xfff) Wait instructions 
are translated 
directly to the 
target PC location 
(INS_OFF) 

JMP reg 0xd00010|((BRANCH1_OFF&0xff0)<<4)|(BRANCH1_OFF&0x0f) Jumps through 
registers are 
translated to go 
through branch1 
code path 

JMP imm 0xd00010|((BRANCH1_OFF&0xff0)<<4)|(BRANCH1_OFF&0x0f) Absolute jumps 
are translated to 
go through 
branch1 code 
path 

J imm opcode&0xfffff000|(BRANCH1_OFF&0xfff) Absolute jumps 
are translated to 
go through 
branch1 code 
path 

RPT opcode 

opcode2 
Repeat opcodes 
are translated 
directly along the 
instruction that 
follows it 

Jxx off1 

Jxx off2 

... 

opcode&0xfffff000|(BRANCH1_OFF&0xfff) 

opcode2&0xfffff000|(BRANCH2_OFF&0xfff) 

... 

A sequence of 
conditional jumps 
following a given 



 

 

instruction is 
translated into 
corresponding 
conditional jumps 
going through 
branch code 
paths (1, 2 or 3) 

 
Table 14 Translation rules used by the instruction rewriter. 

Sample uses 

The following code sequence starts tracing the execution of SlimCORE instructions from 0x86 

firmware location: 

STTKDMADebug.trace(0x86); 

The above invocation produces the following output by the tracer logging routine: 

break at: 0x00000086 

 r0  00000000 *r1  00000001 *r2  00000100  r3  00000000 

*r4  00000003 *r5  00000023 *r6  00000303 *r7  00000005 

*r8  00000006 *r9  23ff0001  r10 00000000 *r11 00000001 

 r12 00000000 *r13 0000024e *r14 000000d0  IP  00000086 

0086  0x00e10001   mov r1,#0001 

 

0086  0x00e10001   mov r1,#0001 

break at: 0x00000087 

 r0  00000000  r1  00000001  r2  00000100  r3  00000000 

 r4  00000003  r5  00000023  r6  00000303  r7  00000005 

 r8  00000006  r9  23ff0001  r10 00000000  r11 00000001 

 r12 00000000  r13 0000024e  r14 000000d0  IP  00000087 

 

0087  0x00a20048   ld r2,[r0,0048] // 0x4120 

break at: 0x00000088 

 r0  00000000  r1  00000001 *r2  00000001  r3  00000000 

 r4  00000003  r5  00000023  r6  00000303  r7  00000005 

 r8  00000006  r9  23ff0001  r10 00000000  r11 00000001 

 r12 00000000  r13 0000024e  r14 000000d0  IP  00000088 

 

0088  0x00722c21   bitval r2,r2,#0002 

0089  0x00881091   jz l_0091 

break at: 0x00000091 

 r0  00000000  r1  00000001 *r2  00000000  r3  00000000 

 r4  00000003  r5  00000023  r6  00000303  r7  00000005 

 r8  00000006  r9  23ff0001  r10 00000000  r11 00000001 

 r12 00000000  r13 0000024e  r14 000000d0  IP  00000091 

0091  0x00a20070   ld r2,[r0,0070] // 0x41c0 

break at: 0x00000092 

 r0  00000000  r1  00000001  r2  00000000  r3  00000000 

 r4  00000003  r5  00000023  r6  00000303  r7  00000005 

 r8  00000006  r9  23ff0001  r10 00000000  r11 00000001 

 r12 00000000  r13 0000024e  r14 000000d0  IP  00000092 

 

0092  0x00721020   bitset r2,r1&0x01<<0 

break at: 0x00000093 

 r0  00000000  r1  00000001 *r2  00000001  r3  00000000 



 

 

 r4  00000003  r5  00000023  r6  00000303  r7  00000005 

 r8  00000006  r9  23ff0001  r10 00000000  r11 00000001 

 r12 00000000  r13 0000024e  r14 000000d0  IP  00000093 

 

0093  0x00d00090   sync 

break at: 0x00000094 

 r0  00000000  r1  00000001  r2  00000001  r3  00000000 

 r4  00000003  r5  00000023  r6  00000303  r7  00000005 

 r8  00000006  r9  23ff0001  r10 00000000  r11 00000001 

 r12 00000000  r13 0000024e  r14 000000d0  IP  00000094 

 

0094  0x00b02070   st r2,[r0,0070] // 0x41c0 

break at: 0x00000095 

 r0  00000000  r1  00000001  r2  00000001  r3  00000000 

 r4  00000003  r5  00000023  r6  00000303  r7  00000005 

 r8  00000006  r9  23ff0001  r10 00000000  r11 00000001 

 r12 00000000  r13 0000024e  r14 000000d0  IP  00000095 

... 
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 APPENDIX A 
By issuing different TKD commands we found out the following: 

 bit 0 (encrypt / decrypt) of a TKD command did not influence the result of the command if 

destination was a key slot (commands such as 01xxxxxx, 04xxxxxx or 15xxxxxx). In such 

cases, a conducted operation was always the same. Upon the test done with respect to the 

04ff0000 TKD command we conclude that this was always the decryption operation, 

 bit 0 (encrypt / decrypt) influenced the result of the TKD command if destination was set to 

0xff (ffxxxxxx commands). 

The test below verifies the nature of the 0x04ff0000 TKD command. The test was conducted with 

the following values of the plaintext / encrypted Control Words: 

CW1 [ 54 29 09 86 26 55 85 00 ] CW2 [ f2 cd 09 c8 d3 bf 30 c2 ] plaintext 

CW1 [ 4e cd c9 e0 a0 52 bd 2f ] CW2 [ 35 39 76 bb a2 f3 9f 80 ] encrypted 

1) First, the input data is set to the value of the encrypted Control Word: 

test> input "e0 c9 cd 4e 2f bd 52 a0 e0 c9 cd 4e 2f bd 52 a0" 

INPUT: e0 c9 cd 4e 2f bd 52 a0 e0 c9 cd 4e 2f bd 52 a0 

2) Next, 0x04ff0000 TKD command is issued. Bit 0 (encryption / decryption) of the command is not 

set and this should indicate that the command does the encryption operation: 

test> ed 0x04ff0000 0x00fa4000 0x008e1abc 

tkcmd 04ff0000 

[running SLIM code] 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

3) In the next step, input data is set to the block of zero values: 

test> input "00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00" 

INPUT: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

4) Then, 0xffff0401 TKD command is issued, which makes use of the key at slot 04 and does the 

decryption operation (due to the value of bit 0 set to 1): 

test> ed 0xffff0401 0x00fa4000 0x008e1abc 

tkcmd ffff0401 

[running SLIM code] 

b9 6a 0c e8 6c d6 44 2e b9 6a 0c e8 6c d6 44 2e 

The result of the decryption operation is the following vector of data: 



 

 

b9 6a 0c e8 6c d6 44 2e b9 6a 0c e8 6c d6 44 2e 

5) Finally, a test is conducted that decrypts the input block of zero values with the use of the 

plaintext Control Word used as a decryption key. Pure Java API is used for that purpose: 

test> tdes d "00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00" "26 55 85 00 54 29 

09 86 26 55 85 00 54 29 09 86" 

 

e8 0c 6a b9 2e 44 d6 6c e8 0c 6a b9 2e 44 d6 6c 

In a result, the same data "b9 6a 0c e8 6c d6 44 2e b9 6a 0c e8 6c d6 44 2e" is obtained. 

This confirms that the operation at step 2 did the DECRYPTION operation in a result of which, key 

slot at index 4 was loaded with plaintext Control Word value (encrypted Control Word was 

decrypted). 

Finally, a quick test is conducted in order to verify whether bit 0 has any influence on the 0x04ff0000 

command: 

test> input "e0 c9 cd 4e 2f bd 52 a0 e0 c9 cd 4e 2f bd 52 a0" 

test> ed 0x04ff0001 0x00fa4000 0x008e1abc 

tkcmd 04ff0001 

[running SLIM code] 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

 

test> input "00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00" 

test> ed 0xffff0401 0x00fa4000 0x008e1abc 

tkcmd ffff0401 

[running SLIM code] 

b9 6a 0c e8 6c d6 44 2e b9 6a 0c e8 6c d6 44 2e 

The above proves that both 0x04ff0000 and 0x04ff0001 TKD commands give same results, thus bit 0 

does not matter. 

The test above also proves that the value of bit 0 (encrypt / decrypt) of TKD commands is not 

consistent across the whole TKD command space. It may either indicate encrypt / decrypt 

functionality or be fixed to the given operation (such as decryption). 


