

Security Vulnerability Notice

SE-2014-02-GOOGLE

[Google App Engine Java security sandbox bypasses, Issues 32-34]

DISCLAIMER

INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, AND TO THE MAXIMUM EXTENT

PERMITTED BY APPLICABLE LAW NEITHER SECURITY EXPLORATIONS, ITS LICENSORS OR

AFFILIATES, NOR THE COPYRIGHT HOLDERS MAKE ANY REPRESENTATIONS OR

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR THAT THE

INFORMATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,

TRADEMARKS, OR OTHER RIGHTS. THERE IS NO WARRANTY BY SECURITY

EXPLORATIONS OR BY ANY OTHER PARTY THAT THE INFORMATION CONTAINED IN THE

THIS DOCUMENT WILL MEET YOUR REQUIREMENTS OR THAT IT WILL BE ERROR-FREE.

YOU ASSUME ALL RESPONSIBILITY AND RISK FOR THE SELECTION AND USE OF THE

INFORMATION TO ACHIEVE YOUR INTENDED RESULTS AND FOR THE INSTALLATION,

USE, AND RESULTS OBTAINED FROM IT.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL

SECURITY EXPLORATIONS, ITS EMPLOYEES OR LICENSORS OR AFFILIATES BE LIABLE FOR

ANY LOST PROFITS, REVENUE, SALES, DATA, OR COSTS OF PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES, PROPERTY DAMAGE, PERSONAL INJURY,

INTERRUPTION OF BUSINESS, LOSS OF BUSINESS INFORMATION, OR FOR ANY SPECIAL,

DIRECT, INDIRECT, INCIDENTAL, ECONOMIC, COVER, PUNITIVE, SPECIAL, OR

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND WHETHER ARISING UNDER

CONTRACT, TORT, NEGLIGENCE, OR OTHER THEORY OF LIABILITY ARISING OUT OF THE

USE OF OR INABILITY TO USE THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN

IF SECURITY EXPLORATIONS OR ITS LICENSORS OR AFFILIATES ARE ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL

ERRORS.

Security Explorations discovered three additional security vulnerabilities in Google App
Engine for Java. A table below, presents their technical summary:

ISSUE

TECHNICAL DETAILS

32 origin com.google.apphosting.runtime.security.shared.SafeClassDef

iner class

cause missing
safeDefineClass(ClassLoader,String,ByteBuffer,CodeSource)

method in SafeClassDefiner implementation

impact access to security sensitive defineClass method handle of

java.security.SecureClassLoader class

type partial GAE security bypass vulnerability

33 origin com.google.apphosting.runtime.security.shared.SafeClassDef

iner class

cause missing
safeDefineClass(ClassLoader,String,byte[],int,int,CodeSour

ce) method in SafeClassDefiner implementation

impact access to security sensitive defineClass method handle of

java.security.SecureClassLoader class

type partial GAE security bypass vulnerability

34 origin com.google.apphosting.runtime.security.shared.intercept.ja

va.lang.invoke.MethodHandles.Lookup_ class

cause missing security check in a bind method

impact obtaining protected method handles from a non-user class loader namespace

type partial GAE security bypass vulnerability

The first two weaknesses are similar to Issues 12 and 14 reported to Google in Dec 2014.

Again, SafeClassDefiner class does not implement all security relevant methods

corresponding to the defineClass of java.lang.ClassLoader class. However, this

time the missing methods have its origin in java.security.SecureClassLoader class,

which is a subclass of java.lang.ClassLoader class.

The implementation of the following two methods is missing from SafeClassDefiner

class:

public static Class safeDefineClass(ClassLoader,String,ByteBuffer,CodeSource)

public static Class safeDefineClass(ClassLoader,String,byte[],int,int,CodeSource)

The above methods lie at the core of Issues 32 and 33. As explained in our technical report
[1], if a search for a safe replacement method handle cannot find it in the

SafeClassDefiner class, the method handle lookup operation proceeds against the

original class. As a result, arbitrary access to a security sensitive defineClass method

could be obtained.

Additionally, due to the security patches introduced in GAE around Feb 2015, method handle
lookup operations have been limited to public members of system classes (non-user defined
classes). That's primarily due to the following security check added to several method

lookup operations (findVirtual, findSpecial, findStatic, etc.):

 if (!RuntimeVerifier.wasClassHierarchyLoadedByUserClassLoader(refc))

 lookup = java.lang.invoke.MethodHandles.publicLookup();

The above check enforces the use of a public Lookup object for any method handle lookup

operation against a non-user defined class. This check is however missing from the

implementation of a bind method of MethodHandles.Lookup mirror class (Issue 34). As

a result, method handles to protected members of system classes (such as

java.security.SecureClassLoader) can be obtained by the means of a bind

operation. Such method handles can be further invoked without any restrictions. This can
lead to the complete escape of a GAE security sandbox.

In our Proof of Concept code, the following exploitation scenario is implemented to achieve
that by combining either Issue 32 or 33 with Issue 34:

 an instance of a custom Class Loader that is a subclass of

java.net.URLClassLoader class is created (MyCL),

 an intermediate Class Loader class (PrivLoader) is defined in MyCL namespace

and outside of a GAE Class Sweeper sandbox with the use of a method handle

corresponding to one of a defineClass methods of

java.security.SecureClassLoader class,

 an instance of a PrivLoader class is created and used to define a privileged

HelperClass class,

 HelperClass class is instantiated and a Security Manager is turned off.

Attached to this report, there are two Proof of Concept codes that illustrates the impact of

the vulnerabilities described above. They have been successfully tested in a production GAE

environment patched against security issues we reported to Google in Dec 2014 / Jan 2015.

REFERENCES

[1] "Google App Engine Java security sandbox bypasses", technical report

http://www.security-explorations.com/materials/se-2014-02-report.pdf

About Security Explorations

Security Explorations (http://www.security-explorations.com) is a security start-

up company from Poland, providing various services in the area of security and vulnerability

research. The company came to life in a result of a true passion of its founder for breaking

security of things and analyzing software for security defects. Adam Gowdiak is the

company's founder and its CEO. Adam is an experienced Java Virtual Machine hacker, with

over 50 security issues uncovered in the Java technology over the recent years. He is also

the hacking contest co-winner and the man who has put Microsoft Windows to its knees

(vide MS03-026). He was also the first one to present successful and widespread attack

against mobile Java platform in 2004.

